Câu hỏi:

25/02/2023 505 Lưu

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên. Khẳng định nào sau đây là đúng?
Media VietJack

A. \(a < 0\), \(b > 0\), \(c = 0\), \(d > 0\).
B. \(a > 0\), \(b < 0\), \(c > 0\), \(d > 0\).
C. \(a < 0\), \(b < 0\), \(c = 0\), \(d > 0\).
D. \(a < 0\), \(b > 0\), \(c > 0\), \(d > 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn A

Tập xác định: \(D = \mathbb{R}\).

\(y' = 3a{x^2} + 2bx + c\).

Dựa vào đồ thị hàm số:

+) \(\mathop {lim}\limits_{x \to + \infty } y = - \infty \) nên \(a < 0\).

+) Giao điểm của đồ thị hàm số với trục tung là \(\left( {0;d} \right)\). Do đó \(d > 0\).

+) Gọi \({x_1}\), \({x_2}\) là hai điểm cực trị của hàm số.

Ta có: \({x_1} + {x_2} > 0 \Leftrightarrow \frac{{ - 2b}}{{3a}} > 0 \Leftrightarrow - 2b\left\langle {0 \Leftrightarrow b} \right\rangle 0\) (vì \(a < 0\)).

\({x_1}.{x_2} = 0 \Leftrightarrow \frac{c}{{3a}} = 0 \Leftrightarrow c = 0\).

Vậy \(a < 0\), \(b > 0\), \(c = 0\), \(d > 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(ac > 0;bd > 0\).
B. \(bd < 0,ad > 0\).
C. \(bc > 0,ad < 0\).
D. \(ab < 0,cd < 0\).

Lời giải

Lời giải

Chọn C

Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).

Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:

\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).

Từ (1) và (2) ta có: \(bc > 0\).

Vậy ta có \(bc > 0,ad < 0\).

Câu 2

A. \(y = {x^4} - 2{x^2}\).
B. \(y = - {x^3} + 3x\).
C. \(y = {x^2} - 2x\).
D. \(y = - {x^4} + 2{x^2}\).

Lời giải

Lời giải

Chọn D

Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.

Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.

Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = \frac{{2{x^2} + 1}}{x}\).
B. \(y = \frac{{{x^2} + 1}}{{1 - {x^2}}}\).
C. \(y = \frac{{{x^2} + 2x}}{{x + 2}}\).
D. \(y = \frac{{{x^2} - 6x + 9}}{{x - 3}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP