Câu hỏi:
25/02/2023 177Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Chọn C
Đặt \(h\left( x \right) = f\left( {1 - x} \right) + 2018x + 2019\).
Ta có: \(h'\left( x \right) = - f'\left( {1 - x} \right) + 2018\).
Ta lại có:
\(f'\left( {1 - x} \right) = \left[ {1 - \left( {1 - x} \right)} \right]\left( {1 - x + 2} \right).g\left( {1 - x} \right) + 2018 = x.\left( {3 - x} \right).g\left( {1 - x} \right) + 2018\).
Suy ra \(h'\left( x \right) = x\left( {x - 3} \right).g\left( {1 - x} \right)\).
Vì \(g\left( x \right) < 0\), \(\forall x \in \mathbb{R}\) nên \(g\left( {1 - x} \right) < 0\), \(\forall x \in \mathbb{R}\).
Do đó \(h'\left( x \right) < 0 \Leftrightarrow x\left( {x - 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x < 0\\x > 3\end{array} \right.\).
Do đó hàm số \(y = h\left( x \right)\) nghịch biến trên mỗi khoảng \(\left( { - \infty \,;0} \right)\), \(\left( {3\,; + \infty } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\)có đồ thị như hình bên. Mệnh đề nào sau đây đúng?
Câu 2:
Câu 3:
Câu 4:
Câu 6:
Câu 7:
về câu hỏi!