Câu hỏi:
25/02/2023 312
Cho hàm số \[y = f\left( x \right)\] xác định trên \(\mathbb{R}\) và có đạo hàm \[f'\left( x \right)\] thỏa mãn \[f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right).g\left( x \right) + 2018\] trong đó \(g\left( x \right) < 0\), \(\forall x \in \mathbb{R}\). Hàm số \[y = f\left( {1 - x} \right) + 2018x + 2019\] nghịch biến trên khoảng nào?
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn C
Đặt \(h\left( x \right) = f\left( {1 - x} \right) + 2018x + 2019\).
Ta có: \(h'\left( x \right) = - f'\left( {1 - x} \right) + 2018\).
Ta lại có:
\(f'\left( {1 - x} \right) = \left[ {1 - \left( {1 - x} \right)} \right]\left( {1 - x + 2} \right).g\left( {1 - x} \right) + 2018 = x.\left( {3 - x} \right).g\left( {1 - x} \right) + 2018\).
Suy ra \(h'\left( x \right) = x\left( {x - 3} \right).g\left( {1 - x} \right)\).
Vì \(g\left( x \right) < 0\), \(\forall x \in \mathbb{R}\) nên \(g\left( {1 - x} \right) < 0\), \(\forall x \in \mathbb{R}\).
Do đó \(h'\left( x \right) < 0 \Leftrightarrow x\left( {x - 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x < 0\\x > 3\end{array} \right.\).
Do đó hàm số \(y = h\left( x \right)\) nghịch biến trên mỗi khoảng \(\left( { - \infty \,;0} \right)\), \(\left( {3\,; + \infty } \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn C
Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).
Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:
\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).
Từ (1) và (2) ta có: \(bc > 0\).
Vậy ta có \(bc > 0,ad < 0\).
Lời giải
Lời giải
Chọn D
Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.
Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.
Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.