Câu hỏi:

25/02/2023 263

Cho hàm số \[y = f\left( x \right)\] xác định trên \(\mathbb{R}\) và có đạo hàm \[f'\left( x \right)\] thỏa mãn \[f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right).g\left( x \right) + 2018\] trong đó \(g\left( x \right) < 0\), \(\forall x \in \mathbb{R}\). Hàm số \[y = f\left( {1 - x} \right) + 2018x + 2019\] nghịch biến trên khoảng nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Đặt \(h\left( x \right) = f\left( {1 - x} \right) + 2018x + 2019\).

Ta có: \(h'\left( x \right) = - f'\left( {1 - x} \right) + 2018\).

Ta lại có:

\(f'\left( {1 - x} \right) = \left[ {1 - \left( {1 - x} \right)} \right]\left( {1 - x + 2} \right).g\left( {1 - x} \right) + 2018 = x.\left( {3 - x} \right).g\left( {1 - x} \right) + 2018\).

Suy ra \(h'\left( x \right) = x\left( {x - 3} \right).g\left( {1 - x} \right)\).

\(g\left( x \right) < 0\), \(\forall x \in \mathbb{R}\) nên \(g\left( {1 - x} \right) < 0\), \(\forall x \in \mathbb{R}\).

Do đó \(h'\left( x \right) < 0 \Leftrightarrow x\left( {x - 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x < 0\\x > 3\end{array} \right.\).

Do đó hàm số \(y = h\left( x \right)\) nghịch biến trên mỗi khoảng \(\left( { - \infty \,;0} \right)\), \(\left( {3\,; + \infty } \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\)có đồ thị như hình bên. Mệnh đề nào sau đây đúng?

Media VietJack

Xem đáp án » 25/02/2023 87,553

Câu 2:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Media VietJack

Xem đáp án » 25/02/2023 35,867

Câu 3:

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \frac{{x + 4}}{{2x - m}}\) nghịch biến trên \(\left( { - 3;4} \right).\)

Xem đáp án » 25/02/2023 27,714

Câu 4:

Có bao nhiêu giá trị nguyên dương của tham số \(m\)để đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - 8x + m}}\]có 3 đường tiệm cận?

Xem đáp án » 25/02/2023 23,581

Câu 5:

Đồ thị hàm số \[y = a{x^3} + b{x^2} + cx + d,\,\]\[a > 0\] có hai điểm cực trị nằm về hai phía của trục \(Oy\). Khẳng định nào sau đây là đúng?

Xem đáp án » 25/02/2023 9,672

Câu 6:

Đồ thị của hàm số nào sau đây có tiệm cận ngang?

Xem đáp án » 25/02/2023 8,989

Câu 7:

Đường thẳng \(\Delta \) có phương trình \(y = 2x + 1\) cắt đồ thị của hàm số \(y = {x^3} - x + 3\) tại hai điểm \(A\)\(B\) với tọa độ được kí hiệu lần lượt là \(A\left( {{x_A};{y_A}} \right)\)\(B\left( {{x_B};{y_B}} \right)\) trong đó \({x_B} < {x_A}\). Tìm \({x_B} + {y_B}\).

Xem đáp án » 25/02/2023 8,470
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay