Câu hỏi:
25/02/2023 220
Cho hàm số y = f(x) có đồ thị hàm y = f'(x) như hình vẽ

Hàm số
tăng trên đoạn [a,b] với
. Giá trị T = min a + max b là
Cho hàm số y = f(x) có đồ thị hàm y = f'(x) như hình vẽ
Hàm số tăng trên đoạn [a,b] với
. Giá trị T = min a + max b là
Câu hỏi trong đề: Bộ 20 đề thi giữa kì 1 Toán 12 năm 2022-2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Chọn C
Đặt
.
Vẽ đồ thị hàm số y = f'(x) và trên cùng hệ tọa độ ta được
Dựa vào hình vẽ ta có:
đồng biến trên (0;2), mà
liên tục trên [0;2] nên nó đồng biến trên đoạn [0;2]
đồng biến trên mọi
nên min a = 0, max b = 2
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Chọn C
Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).
Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:
\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).
Từ (1) và (2) ta có: \(bc > 0\).
Vậy ta có \(bc > 0,ad < 0\).
Lời giải
Lời giải
Chọn D
Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.
Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.
Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.