Câu hỏi:

25/02/2023 1,232

Cho hàm số \(f\left( x \right) = {x^3} + x - 2\). Số đường tiệm cận của đồ thị hàm số \[y = \frac{3}{{{f^2}\left( x \right) + 2f\left( x \right)}}\] là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn C

Ta có \({f^2}\left( x \right) + 2f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f\left( x \right) = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} + x - 2 = 0\\{x^3} + x - 2 = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left( {x - 1} \right)\left( {{x^2} + x + 2} \right) = 0\\x\left( {{x^2} + 1} \right) = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\end{array} \right.\). Do đó, đồ thị hàm số \[y = \frac{3}{{{f^2}\left( x \right) + 2f\left( x \right)}}\] có 2 tiệm cận đứng là \(x = 1;x = 0\).

Mặt khác \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty \Rightarrow \mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{3}{{{f^2}\left( x \right) + 2f\left( x \right)}} = 0.\)

Do đó, đồ thị hàm số \[y = \frac{3}{{{f^2}\left( x \right) + 2f\left( x \right)}}\] có 1 tiệm cận ngang là \(y = 0\).

(Hoặc có thể giải thích: Do hàm số \[y = \frac{3}{{{f^2}\left( x \right) + 2f\left( x \right)}}\] có bậc của tử nhỏ hơn bậc của mẫu nên có 1 tiệm cận ngang là \(y = 0\).)

Vậy số đường tiệm cận của đồ thị hàm số \(y\) là 3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\)có đồ thị như hình bên. Mệnh đề nào sau đây đúng?

Media VietJack

Xem đáp án » 25/02/2023 83,505

Câu 2:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Media VietJack

Xem đáp án » 25/02/2023 35,448

Câu 3:

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \frac{{x + 4}}{{2x - m}}\) nghịch biến trên \(\left( { - 3;4} \right).\)

Xem đáp án » 25/02/2023 27,166

Câu 4:

Có bao nhiêu giá trị nguyên dương của tham số \(m\)để đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - 8x + m}}\]có 3 đường tiệm cận?

Xem đáp án » 25/02/2023 23,253

Câu 5:

Đồ thị của hàm số nào sau đây có tiệm cận ngang?

Xem đáp án » 25/02/2023 8,938

Câu 6:

Đồ thị hàm số \[y = a{x^3} + b{x^2} + cx + d,\,\]\[a > 0\] có hai điểm cực trị nằm về hai phía của trục \(Oy\). Khẳng định nào sau đây là đúng?

Xem đáp án » 25/02/2023 8,735

Câu 7:

Đường thẳng \(\Delta \) có phương trình \(y = 2x + 1\) cắt đồ thị của hàm số \(y = {x^3} - x + 3\) tại hai điểm \(A\)\(B\) với tọa độ được kí hiệu lần lượt là \(A\left( {{x_A};{y_A}} \right)\)\(B\left( {{x_B};{y_B}} \right)\) trong đó \({x_B} < {x_A}\). Tìm \({x_B} + {y_B}\).

Xem đáp án » 25/02/2023 8,279
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua