Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(SA\), \(SD\). Mặt phẳng \(\left( \alpha \right)\) chứa \(MN\) cắt các cạnh \(SB\), \(SC\) lần lượt tại \(Q\), \(P\). Đặt \(\frac{{SQ}}{{SB}} = x\), \({V_1}\) là thể tích của khối chóp \(S.MNQP\), \(V\) là thể tích của khối chóp \(S.ABCD\). Tìm \(x\) để \({V_1} = \frac{1}{2}V\).
Quảng cáo
Trả lời:
Lời giải
Chọn A

Do \(\left\{ {\begin{array}{*{20}{c}}{MN\;{\rm{//}}\;BC}\\{\left( \alpha \right) \cap \left( {SBC} \right) = PQ}\end{array}} \right.\) \( \Rightarrow PQ\;{\rm{//}}\;BC\).
\(\frac{{{V_{S.MNQ}}}}{V} + \frac{{{V_{S.NPQ}}}}{V} = \frac{{{V_1}}}{V}\) \( \Leftrightarrow \)\(\frac{{{V_{S.MNQ}}}}{{2{V_{S.ABD}}}} + \frac{{{V_{S.NPQ}}}}{{2{V_{S.BCS}}}} = \frac{1}{2}\) \( \Leftrightarrow \frac{{SM}}{{SA}}.\frac{{SN}}{{SD}}.\frac{{SQ}}{{SB}} + \frac{{SP}}{{SC}}.\frac{{SN}}{{SD}}.\frac{{SQ}}{{SB}} = 1\) \( \Leftrightarrow \frac{x}{4} + \frac{{{x^2}}}{2} = 1\) \( \Leftrightarrow 2{x^2} + x - 4 = 0\) \( \Leftrightarrow x = \frac{{ - 1 + \sqrt {33} }}{4}\) (vì \(x > 0\)).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Chọn C
Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).
Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:
\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).
Từ (1) và (2) ta có: \(bc > 0\).
Vậy ta có \(bc > 0,ad < 0\).
Câu 2
Lời giải
Lời giải
Chọn D
Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.
Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.
Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

