Câu hỏi:

25/02/2023 1,886

Gọi \(S\) là tập hợp các giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(y = \left| {\frac{{{x^2} - mx + 2m}}{{x - 2}}} \right|\) trên đoạn \(\left[ { - 1\;;\;1} \right]\) bằng \(3\). Tính tổng tất cả các phần tử của \(S\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn D

Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} - mx + 2m}}{{x - 2}}\) trên \(\left[ { - 1\;;\;1} \right]\) có \(f'\left( x \right) = 1 - \frac{4}{{{{\left( {x - 2} \right)}^2}}}\);

\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 4 \notin \left[ { - 1;\;1} \right]}\end{array}} \right.\); \(f\left( { - 1} \right) = \frac{{3m + 1}}{{ - 3}};\;f\left( 0 \right) = - m;\;f\left( 1 \right) = \frac{{m + 1}}{{ - 1}}\).

Bảng biến thiên

Media VietJack

Trường hợp 1. \(f\left( 0 \right) \le 0 \Leftrightarrow m \ge 0\). Khi đó

\(3 = \mathop {{\rm{max}}}\limits_{\left[ { - 1;1} \right]} \left| {f\left( x \right)} \right| = {\rm{max}}\left\{ {\left| {f\left( { - 1} \right)} \right|;\left| {f\left( 1 \right)} \right|} \right\} \Leftrightarrow \) \(3 = {\rm{max}}\left\{ {\frac{{3m + 1}}{3};m + 1} \right\}\) \( \Leftrightarrow m + 1 = 3 \Leftrightarrow m = 2\).

Trường hợp 2. \(f\left( 0 \right) > 0 \Leftrightarrow m < 0\).

Khả năng 1. \(\left\{ {\begin{array}{*{20}{l}}{f\left( { - 1} \right) \ge 0}\\{f\left( 1 \right) \ge 0}\end{array}} \right. \Leftrightarrow m \le - 1\). Khi đó \(3 = \mathop {{\rm{max}}}\limits_{\left[ { - 1;1} \right]} \left| {f\left( x \right)} \right| = f\left( 0 \right)\) \( \Leftrightarrow m = - 3\).

Khả năng 2. \( - 1 < m \le - \frac{1}{3}\). Khi đó \(\left\{ {\begin{array}{*{20}{l}}{f\left( { - 1} \right) \ge 0}\\{f\left( 1 \right) < 0}\end{array}} \right.\). \(3 = \mathop {{\rm{max}}}\limits_{\left[ { - 1;1} \right]} \left| {f\left( x \right)} \right| = {\rm{max}}\left\{ {f\left( 0 \right);\;\left| {f\left( 1 \right)} \right|} \right\}\)

\( \Leftrightarrow 3 = {\rm{max}}\left\{ { - m;m + 1} \right\}\): Trường hợp này vô nghiệm.

Khả năng 3. \( - \frac{1}{3} < m < 0\). Khi đó \(3 = \mathop {{\rm{max}}}\limits_{\left[ { - 1;1} \right]} \left| {f\left( x \right)} \right| = {\rm{max}}\left\{ {f\left( 0 \right);\;\left| {f\left( 1 \right)} \right|;\;\left| {f\left( { - 1} \right)} \right|} \right\}\): Vô nghiệm.

Vậy có hai giá trị thỏa mãn là \({m_1} = - 3,\;{m_2} = 2\). Do đó tổng tất cả các phần tử của \(S\) là \( - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn C

Đồ thị hàm số có đường tiệm cận đứng nằm bên phải \(Oy\)và đường tiệm cận ngang nằm bên trên \(Ox\)nên \(\left\{ \begin{array}{l} - \frac{d}{c} > 0\\\frac{a}{c} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}cd < 0{\rm{ }}(1)\\ac > 0\end{array} \right. \Leftrightarrow ad < 0\).

Đồ thị hàm số cắt \(Ox\)tại \(\left( { - \frac{b}{a};0} \right)\), cắt \(Oy\)tại \(\left( {0;\frac{b}{d}} \right)\), từ đồ thị hàm số ta có:

\(\left\{ \begin{array}{l} - \frac{b}{a} < 0\\\frac{b}{d} < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ab > 0\\bd < 0{\rm{ }}(2)\end{array} \right.\).

Từ (1) và (2) ta có: \(bc > 0\).

Vậy ta có \(bc > 0,ad < 0\).

Câu 2

Lời giải

Lời giải

Chọn D

Đường cong có dạng của đồ thị hàm số bậc \(4\) trùng phương với hệ số \(a < 0\) nên chỉ có hàm số \(y = - {x^4} + 2{x^2}\) thỏa yêu cầu bài toán.

Phương án nhiễu A, học sinh tự đổi dấu các hệ số nên nhầm dạng đồ thị.

Phương án nhiễu B và C, học sinh nhầm dạng đồ thị hàm số bậc 2 và bậc 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP