Câu hỏi:

25/02/2023 765 Lưu

Tìm giá trị nhỏ nhất \(m\) của hàm số \[y = {x^4} - {x^2} + 13\] trên đoạn \(\left[ { - 2;3} \right]\).

A. \[m = \frac{{51}}{4}\].
B. \[m = \frac{{49}}{4}\].
C. \[m = 13\].
D. \[m = \frac{{51}}{2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn A
Hàm số đã cho xác định và liên tục trên \(\left[ { - 2;3} \right]\).
Ta có \(y' = 4{x^3} - 2x\), \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in - \left[ { - 2;3} \right]\\x = \frac{{\sqrt 2 }}{2} \in - \left[ { - 2;3} \right]\\x = - \frac{{\sqrt 2 }}{2} \in \left[ { - 2;3} \right]\end{array} \right.\).
Khi đó \(y\left( { - 2} \right) = 25\), \(y\left( 0 \right) = 13\), \(y\left( 3 \right) = 85\), \(y\left( {\frac{{\sqrt 2 }}{2}} \right) = \frac{{51}}{4}\), \(y\left( { - \frac{{\sqrt 2 }}{2}} \right) = \frac{{51}}{4}\).
Vậy \(m = \mathop {\min }\limits_{\left[ { - 2;3} \right]} y = y\left( { \pm \frac{{\sqrt 2 }}{2}} \right) = \frac{{51}}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = - {x^3} + 3x + 1\).
B. \(y = - {x^2} + x - 1\).
C. \(y = {x^4} - {x^2} + 1\).
D. \(y = {x^3} - 3x + 1\).

Lời giải

Lời giải

Chọn D
Nhìn vào đồ thị thì đây là đồ thị hàm số bậc 3 nên loại đáp án B, C
Do đồ thị đi từ dưới lên nên \(a > 0\) nên ta loại đáp án D

Câu 2

A. \(V = Sh\).
B. \(V = \frac{1}{2}Sh\).
C. \(V = \frac{1}{3}Sh\).
D. \(V = 3Sh\).

Lời giải

Lời giải

Chọn C
Thể tích \(V\) của khối chóp có diện tích đáy bằng \(S\) và chiều cao bằng \(h\) \(V = \frac{1}{3}Sh\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu \[f'\left( {{x_0}} \right) = 0\] và \[f''\left( {{x_0}} \right) > 0\] thì hàm số đạt cực tiểu tại \[{x_0}\].
B. Nếu \[f'\left( {{x_0}} \right) = 0\] và \[f''\left( {{x_0}} \right) < 0\] thì hàm số đạt cực đại tại \[{x_0}\].
C. Nếu \[f'\left( x \right)\] đổi dấu khi \[x\] qua điểm \[{x_0}\] và \[f\left( x \right)\] liên tục tại \[{x_0}\] thì hàm số \[y = f\left( x \right)\] đạt cực trị tại điểm \[{x_0}\].
D. Hàm số \[y = f\left( x \right)\] đạt cực trị tại \[{x_0}\] khi và chỉ khi \[{x_0}\] là nghiệm của đạo hàm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP