Câu hỏi:

25/02/2023 137 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right)\). Hàm số \(f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

A. \(\left( { - \infty ;1} \right)\).
B. \(\left( {1;2} \right)\).
C. \(\left( { - 1;1} \right)\).
D. \(\left( {2; + \infty } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn B
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1{\rm{ }}\left( {{\rm{nghie\"a m ke\`u p}}} \right)\\x = 1{\rm{ }}\left( {{\rm{nghie\"a m bo\"a i ba}}} \right)\\x = 2{\rm{ }}\left( {{\rm{nghie\"a m \~n \^o n}}} \right)\end{array} \right.\).
Bảng xét dấu \(f'\left( x \right)\):

Media VietJack

Vậy hàm số \(f\left( x \right)\) đồng biến trên khoảng \(\left( {1;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = - {x^3} + 3x + 1\).
B. \(y = - {x^2} + x - 1\).
C. \(y = {x^4} - {x^2} + 1\).
D. \(y = {x^3} - 3x + 1\).

Lời giải

Lời giải

Chọn D
Nhìn vào đồ thị thì đây là đồ thị hàm số bậc 3 nên loại đáp án B, C
Do đồ thị đi từ dưới lên nên \(a > 0\) nên ta loại đáp án D

Câu 2

A. \(V = Sh\).
B. \(V = \frac{1}{2}Sh\).
C. \(V = \frac{1}{3}Sh\).
D. \(V = 3Sh\).

Lời giải

Lời giải

Chọn C
Thể tích \(V\) của khối chóp có diện tích đáy bằng \(S\) và chiều cao bằng \(h\) \(V = \frac{1}{3}Sh\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu \[f'\left( {{x_0}} \right) = 0\] và \[f''\left( {{x_0}} \right) > 0\] thì hàm số đạt cực tiểu tại \[{x_0}\].
B. Nếu \[f'\left( {{x_0}} \right) = 0\] và \[f''\left( {{x_0}} \right) < 0\] thì hàm số đạt cực đại tại \[{x_0}\].
C. Nếu \[f'\left( x \right)\] đổi dấu khi \[x\] qua điểm \[{x_0}\] và \[f\left( x \right)\] liên tục tại \[{x_0}\] thì hàm số \[y = f\left( x \right)\] đạt cực trị tại điểm \[{x_0}\].
D. Hàm số \[y = f\left( x \right)\] đạt cực trị tại \[{x_0}\] khi và chỉ khi \[{x_0}\] là nghiệm của đạo hàm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP