Câu hỏi:

25/02/2023 358 Lưu

Tìm tập hợp các giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^4} + \left( {{m^2} - 4} \right){x^2} + 1 - m\) có một điểm cực trị

A. \[\left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\].
B. \[\left[ { - 2;2} \right]\].
C. \(\left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\).
D. \(\left( { - 2;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn C
Ta có \(y' = 4{x^3} + 2\left( {{m^2} - 4} \right)x = 2x\left( {{x^2} + {m^2} - 4} \right)\)
Hàm số đã cho là hàm số trùng phương nên có đúng một cực trị khi \(y' = 0\) có một nghiệm.
Hay \(2x\left( {{x^2} + {m^2} - 4} \right) = 0\)có đúng một nghiệm \( \Leftrightarrow {m^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}m \le - 2\\m \ge 2\end{array} \right.\).
Chú ý:
+ Hàm số \(y = a{x^4} + b{x^2} + c\) có đúng một cực trị khi và chỉ khi \(\left\{ \begin{array}{l}ab \ge 0\\{a^2} + {b^2} > 0\end{array} \right..\) \(\left( 1 \right)\)
Đặc biệt: Hàm số trùng phương \(y = a{x^4} + b{x^2} + c\,\,\left( {a \ne 0} \right)\)có đúng một cực trị khi và chỉ khi \(ab \ge 0\).
+ Hàm số \(y = a{x^4} + b{x^2} + c\) có ba cực trị khi và chỉ khi \(ab < 0.\) \(\left( 2 \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = - {x^3} + 3x + 1\).
B. \(y = - {x^2} + x - 1\).
C. \(y = {x^4} - {x^2} + 1\).
D. \(y = {x^3} - 3x + 1\).

Lời giải

Lời giải

Chọn D
Nhìn vào đồ thị thì đây là đồ thị hàm số bậc 3 nên loại đáp án B, C
Do đồ thị đi từ dưới lên nên \(a > 0\) nên ta loại đáp án D

Câu 2

A. \(V = Sh\).
B. \(V = \frac{1}{2}Sh\).
C. \(V = \frac{1}{3}Sh\).
D. \(V = 3Sh\).

Lời giải

Lời giải

Chọn C
Thể tích \(V\) của khối chóp có diện tích đáy bằng \(S\) và chiều cao bằng \(h\) \(V = \frac{1}{3}Sh\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu \[f'\left( {{x_0}} \right) = 0\] và \[f''\left( {{x_0}} \right) > 0\] thì hàm số đạt cực tiểu tại \[{x_0}\].
B. Nếu \[f'\left( {{x_0}} \right) = 0\] và \[f''\left( {{x_0}} \right) < 0\] thì hàm số đạt cực đại tại \[{x_0}\].
C. Nếu \[f'\left( x \right)\] đổi dấu khi \[x\] qua điểm \[{x_0}\] và \[f\left( x \right)\] liên tục tại \[{x_0}\] thì hàm số \[y = f\left( x \right)\] đạt cực trị tại điểm \[{x_0}\].
D. Hàm số \[y = f\left( x \right)\] đạt cực trị tại \[{x_0}\] khi và chỉ khi \[{x_0}\] là nghiệm của đạo hàm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP