Câu hỏi:

25/02/2023 1,251

Cho hàm số bậc năm \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình bên. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} + 3{x^2}} \right)\)
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Chọn B
Ta có \(g'\left( x \right) = \left( {3{x^2} + 6x} \right).f'\left( {{x^3} + 3{x^2}} \right)\).
\(g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3{x^2} + 6x = 0}\\{f'\left( {{x^3} + 3{x^2}} \right) = 0}\end{array}} \right.\).
Phương trình
\(3{x^2} + 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right..\)
Phương trình
\(f'\left( {{x^3} + 3{x^2}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x^3} + 3{x^2} = a < 0}\\{{x^3} + 3{x^2} = 0}\\{{x^3} + 3{x^2} = 4}\\{{x^3} + 3{x^3} = b > 4}\end{array}} \right.\).
Ta thấy: \({x^3} + 3{x^2} = 0 \Leftrightarrow {x^2}\left( {x + 3} \right) = 0 \Leftrightarrow x = 0;x = - 3\)
\({x^3} + 3{x^2} = 4 \Leftrightarrow \left( {x - 1} \right){\left( {x + 2} \right)^2} = 0 \Leftrightarrow x = 1;x = - 2\).
Hàm số \(h\left( x \right) = {x^3} + 3{x^2}\)\(h'\left( x \right) = 3{x^2} + 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right.\).
Bảng biến thiên của hàm \(h\left( x \right)\):

Media VietJack

Dựa vào bảng biên thiên của hàm \(h\left( x \right)\), ta có
Phương trình \({x^3} + 3{x^2} = a < 0\) có duy nhất một nghiệm \({x_1} < - 3\).
Phương trình \({x^3} + 3{x^2} = b > 4\) có duy nhất một nghiệm \({x_2} > 1\).
Do đó, phương trình \(g'\left( x \right) = 0\) có bốn nghiệm đơn phân biệt và hai nghiệm bội ba nên hàm số \(y = g\left( x \right)\) có 6 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Chọn D
Nhìn vào đồ thị thì đây là đồ thị hàm số bậc 3 nên loại đáp án B, C
Do đồ thị đi từ dưới lên nên \(a > 0\) nên ta loại đáp án D

Câu 2

Lời giải

Lời giải

Chọn C
Thể tích \(V\) của khối chóp có diện tích đáy bằng \(S\) và chiều cao bằng \(h\) \(V = \frac{1}{3}Sh\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP