Câu hỏi:

27/02/2023 701

Cho hàm số \(y = f\left( x \right)\) là hàm đa thức bậc 3 và có bảng biến thiên như sau

Media VietJack

Số nghiệm của phương trình\(f\left( {\sin x + \sqrt 3 \cos x} \right) = 0\)trong đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn A
Đặt \(t = \sin x + \sqrt 3 \cos x\). Ta có \(t = 2\cos \left( {x - \frac{\pi }{6}} \right) \Rightarrow - 2 \le t \le 2\). Ta được PT \(f\left( t \right) = 0\).
Dựa vào BBT ta thấy đồ thị hàm số có 2 điểm cực trị là \(\left( { - 2; - 4} \right)\)\(\left( {2;4} \right)\) nên đồ thị có điểm uốn là gốc tọa độ \(O\). Do đó đồ thị cắt trục hoành tại 3 điểm có hoành độ lần lượt là \(x = a\left\langle { - 2,x = 0,x = b} \right\rangle 2\). Mà \( - 2 \le t \le 2\) nên PT \(f\left( t \right) = 0\) có 1 nghiệm là \(t = 0\).
Với \(t = 0\) ta được \(2\cos \left( {x - \frac{\pi }{6}} \right) = 0 \Leftrightarrow x - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{2\pi }}{3} + k\pi \left( {k \in \mathbb{Z}} \right)\).
Theo yêu cầu bài: \(0 \le x \le \frac{{5\pi }}{2} \Leftrightarrow 0 \le \frac{{2\pi }}{3} + k\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{2}{3} \le k \le \frac{{11}}{6}\).
\(k \in \mathbb{Z} \Rightarrow k = 0;k = 1\). Ta được 2 nghiệm \(x = \frac{{2\pi }}{3}\)\(x = \frac{{5\pi }}{3}\) thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \[m\] sao cho hàm số \(f(x) = \frac{1}{3}{x^3} + m{x^2} + 9x + 1\) đồng biến trên \(\mathbb{R}\)?

Xem đáp án » 27/02/2023 25,163

Câu 2:

Cho hàm số \(y = {x^4} - 3{x^2}\) có đồ thị \(\left( C \right)\). Số giao điểm của đồ thị \(\left( C \right)\) và đường thẳng \(y = 2\)

Xem đáp án » 27/02/2023 16,605

Câu 3:

Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?

Xem đáp án » 27/02/2023 6,755

Câu 4:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ bên

Media VietJack

Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {2{x^3} - 3{x^2} + 1} \right)\)

Xem đáp án » 27/02/2023 6,320

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)\(f'\left( x \right) = \left( {{x^2} - 3x} \right)\left( {{x^2} - 4x} \right)\). Điểm cực đại của hàm số đã cho là

Xem đáp án » 27/02/2023 5,015

Câu 6:

Đồ thị hàm số \(y = \frac{{x - 1}}{{\left| x \right| + 1}}\) có bao nhiêu đường tiệm cận?

Xem đáp án » 27/02/2023 4,099

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ

Media VietJack

Hàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng

Xem đáp án » 27/02/2023 2,195

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store