Câu hỏi:

12/07/2024 13,864

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Khi m = 0 ta có phương trình x2 – 2x = 0

Û x(x – 2) = 0

Û \(\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Vậy khi m = 0, phương trình có tập nghiệm S = {0; 2}.

b) Phương trình x2 – 2x – 2m2 = 0 (1)

Phương trình (1) có hai nghiệm phân biệt x1, x2 khác 0 Û \(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1}.{x_2} \ne 0\end{array} \right.\)

 Media VietJack

Theo hệ thức Viet ta có:

\[\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = - 2{m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 2 - {x_1}\,\,\,\,\,\\{x_1}.{x_2} = - 2{m^2}\,\,\left( * \right)\end{array} \right.\]

Do x1, x2 là hai nghiệm của phương trình (1) nên ta có:

\[\left\{ \begin{array}{l}{\rm{x}}_1^2--2{x_1}--2{m^2} = 0\\{\rm{x}}_2^2--2{x_2}--2{m^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 2{x_2} + 2{m^2}\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 2\left( {2 - {x_1}} \right) + 2{m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 4 - 2{x_1} + 2{m^2}\end{array} \right.\)

Theo bài, \(x_1^2 = 4x_2^2\)

Û 2x1 + 2m2 = 4.(4 – 2x1 + 2m2)

Û 2x1 + 2m2 = 16 – 8x1 + 8m2

Û 10x1 = 6m2 + 16

Û \({x_1} = \frac{{3{m^2} + 8}}{5}\)

Khi đó \[{x_2} = 2 - \frac{{3{m^2} + 8}}{5} = \frac{{2 - 3{m^2}}}{5}\]

Thay \({x_1} = \frac{{3{m^2} + 8}}{5}\)\[{x_2} = \frac{{2 - 3{m^2}}}{5}\]vào (*) ta được:

\[\frac{{3{m^2} + 8}}{5}.\frac{{2 - 3{m^2}}}{5} = - 2{m^2}\]

Û 6m2 – 9m4 + 16 – 24m2 = ‒50m2

Û 32m2 – 9m4 + 16 = 0

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\\{m^2} = - \frac{4}{9}\,\,\,\left( {loai} \right)\end{array} \right. \Leftrightarrow m = \pm 2\left( {tm\,\,m \ne 0} \right)\).

Vậy m = ± 2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có: \(OI \bot AC\) nên \(\widehat {OIC} = 90^\circ \)

               \(CH \bot AB\) nên \(\widehat {OHC} = 90^\circ \)

Xét tứ giác CHOI có \[\widehat {OIC} + \widehat {OHC} = 90^\circ + 90^\circ = 180^\circ \], mà hai góc này ở vị trí đối nhau trong tứ giác

Do đó tứ giác CHOI nội tiếp.

Suy ra bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Do Ax là tiếp tuyến của đường tròn (O) nên Ax AB, do đó \(\widehat {xAB} = 90^\circ \)

Xét tam giác AOM vuông tại A có đường cao AI, theo hệ thức lượng trong tam giác vuông ta có: OA2 = OI.OM

Mà OA = R (bán kính đường tròn) nên OI.OM = R2.

Theo bài, R = 6 cm và OM = 2R

Do đó \(OI = \frac{{{R^2}}}{{OM}} = \frac{{{R^2}}}{{2R}} = \frac{R}{2} = 3\left( {cm} \right)\).

c) Ta có điểm C nằm trên đường tròn (O), đường kính AB nên \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó AC BC tại C.

Lại có OI AC tại I

Suy ra OI // BC nên \(\widehat {AOM} = \widehat {ABC}\)

Hay \(\widehat {AOM} = \widehat {HBC}\)

Xét DAMO và DHCB có:

\(\widehat {MAO} = \widehat {CHB} = 90^\circ \) và \(\widehat {AOM} = \widehat {HBC}\)

Suy ra .

Gọi N là giao điểm của BC và Ax.

Xét DABN có OM // BN và O là trung điểm của AB nên M là trung điểm của AN.

Do CH // AN, theo hệ quả định lí Talet ta có: \(\frac{{HK}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KC}}{{MN}}\)

Do đó \(\frac{{HK}}{{AM}} = \frac{{KC}}{{MN}}\), mà AM = MN (do M là trung điểm của AN)

Suy ra HK = KC.

Lời giải

Lời giải

• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1

Û m ≠ ‒2.

• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û \(m \ne - \frac{1}{2}\).

Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.

Khi đó 0 = (2m + 1)xA – 2m – 3

Þ \({x_A} = \frac{{2m + 3}}{{2m + 1}}\). Suy ra \(A\left( {\frac{{2m + 3}}{{2m + 1}};0} \right)\).

• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.

Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.

Khi đó 0 = (m – 1)xB + m

Þ \({x_B} = \frac{{ - m}}{{m - 1}}\). Suy ra \(B\left( {\frac{{ - m}}{{m - 1}};0} \right)\).

Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.

\( \Leftrightarrow \frac{{2m + 3}}{{2m + 1}} = \frac{{ - m}}{{m - 1}}\)

Þ (2m + 3).(m – 1) = (2m + 1).(‒m)

Û 2m2 + m – 3 = –2m2 – m

Û 4m2 + 2m – 3 = 0

Û \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) (thỏa mãn).

Vậy \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) thỏa mãn yêu cầu đề bài.

Câu 3

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay