Câu hỏi:

12/07/2024 7,962

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Khi m = 0 ta có phương trình x2 – 2x = 0

Û x(x – 2) = 0

Û \(\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Vậy khi m = 0, phương trình có tập nghiệm S = {0; 2}.

b) Phương trình x2 – 2x – 2m2 = 0 (1)

Phương trình (1) có hai nghiệm phân biệt x1, x2 khác 0 Û \(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1}.{x_2} \ne 0\end{array} \right.\)

 Media VietJack

Theo hệ thức Viet ta có:

\[\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = - 2{m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 2 - {x_1}\,\,\,\,\,\\{x_1}.{x_2} = - 2{m^2}\,\,\left( * \right)\end{array} \right.\]

Do x1, x2 là hai nghiệm của phương trình (1) nên ta có:

\[\left\{ \begin{array}{l}{\rm{x}}_1^2--2{x_1}--2{m^2} = 0\\{\rm{x}}_2^2--2{x_2}--2{m^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 2{x_2} + 2{m^2}\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 2\left( {2 - {x_1}} \right) + 2{m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 4 - 2{x_1} + 2{m^2}\end{array} \right.\)

Theo bài, \(x_1^2 = 4x_2^2\)

Û 2x1 + 2m2 = 4.(4 – 2x1 + 2m2)

Û 2x1 + 2m2 = 16 – 8x1 + 8m2

Û 10x1 = 6m2 + 16

Û \({x_1} = \frac{{3{m^2} + 8}}{5}\)

Khi đó \[{x_2} = 2 - \frac{{3{m^2} + 8}}{5} = \frac{{2 - 3{m^2}}}{5}\]

Thay \({x_1} = \frac{{3{m^2} + 8}}{5}\)\[{x_2} = \frac{{2 - 3{m^2}}}{5}\]vào (*) ta được:

\[\frac{{3{m^2} + 8}}{5}.\frac{{2 - 3{m^2}}}{5} = - 2{m^2}\]

Û 6m2 – 9m4 + 16 – 24m2 = ‒50m2

Û 32m2 – 9m4 + 16 = 0

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\\{m^2} = - \frac{4}{9}\,\,\,\left( {loai} \right)\end{array} \right. \Leftrightarrow m = \pm 2\left( {tm\,\,m \ne 0} \right)\).

Vậy m = ± 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,630

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 13,976

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 11,837

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 9,945

Câu 5:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,638

Câu 6:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,334

Bình luận


Bình luận