Câu hỏi:

12/07/2024 3,767

Cho tam giác ABC vuông tại A, đường cao AH.

a) Chứng minh: AH.BC = AB.AC.

b) Gọi M là điểm nằm ở giữa B và C. Kẻ MN vuông với AB, MP vuông góc với AC (N thuộc AB, P thuộc AC ) tứ giác ANMP là hình gì? Vì sao?

c) Tính số đo góc NHP?

d) Tìm vị trí M trên BC để NP có độ dài ngắn nhất?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Tam giác ABC vuông tại A nên diện tích tam giác ABC bằng: \({S_{ABC}} = \frac{1}{2}AB.AC\)

AH vuông góc với BC nên diện tích tam giác ABC được tính bằng: \({S_{ABC}} = \frac{1}{2}AH.BC\)

Do đó \(\frac{1}{2}AH.BC = {S_{ABC}} = \frac{1}{2}AB.AC\)

Suy ra AH.BC = AB.AC.

b) MN vuông góc với AB, MP vuông góc với AC nên \(\widehat {MNA} = \widehat {MPA} = 90^\circ \)

Tam giác ABC vuông tại A nên \(\widehat {NAP} = 90^\circ \)

Tứ giác ANMP có \(\widehat {MNA} = \widehat {MPA} = \widehat {NAP} = 90^\circ \) nên là hình chữ nhật.

c) Gọi I là giao điểm của NP và AM

ANMP là hình chữ nhật nên I là trung điểm NP, AM và AM = NP.

Tam giác AHM vuông tại H có trung tuyến HI nên \(HI = \frac{1}{2}AM = \frac{1}{2}NP\)

Tam giác NHP có trung tuyến HI thỏa mãn \(HI = \frac{1}{2}NP\) nên tam giác NHP vuông tại H.

Do đó \(\widehat {NHP} = 90^\circ \)

d) NP nhỏ nhất mà NP = AM nên AM nhỏ nhất

Ta có: AH là đường cao từ A tới BC nên AM ≥ AH.

Do đó AM nhỏ nhất khi M trùng H.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Xem đáp án » 12/07/2024 18,485

Câu 2:

Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.

a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.

b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.

c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.

Xem đáp án » 12/07/2024 13,507

Câu 3:

Cho hàm số y = 2x2 – 3x – 5 (1). Tìm giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa mãn \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\).

Xem đáp án » 12/07/2024 11,530

Câu 4:

Tìm tập xác định của hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\sqrt { - 3x + 8} + x\,\,\,khi\,\,x < 2\\\sqrt {x + 7} + 1\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 2\end{array} \right.\).

Xem đáp án » 11/07/2024 9,613

Câu 5:

Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).

a) Giải phương trình khi m = 0.

 b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).

Xem đáp án » 12/07/2024 7,826

Câu 6:

Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM và CD = 2CN. Gọi G là trọng tâm của tam giác MNB. Phân tích các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {AG} \) qua các vectơ \(\overrightarrow {AB} \)\(\overrightarrow {AC} \).

Xem đáp án » 12/07/2024 7,513

Câu 7:

Cho a + b = 1 và ab ≠ 0. Chứng minh \(\frac{a}{{{b^3} - 1}} + \frac{b}{{{a^3} - 1}} = \frac{{2.\left( {ab - 2} \right)}}{{{a^2}{b^2} + 3}}\).

Xem đáp án » 12/07/2024 5,216

Bình luận


Bình luận