Câu hỏi:
12/07/2024 27,461Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O; R), tia OI cắt Ax tại M, chứng minh OI.OM = R2. Tính độ dài đoạn thẳng OI biết OM = 2R và R = 6 cm.
c) Gọi giao điểm của BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC = KH.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta có: \(OI \bot AC\) nên \(\widehat {OIC} = 90^\circ \)
\(CH \bot AB\) nên \(\widehat {OHC} = 90^\circ \)
Xét tứ giác CHOI có \[\widehat {OIC} + \widehat {OHC} = 90^\circ + 90^\circ = 180^\circ \], mà hai góc này ở vị trí đối nhau trong tứ giác
Do đó tứ giác CHOI nội tiếp.
Suy ra bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Do Ax là tiếp tuyến của đường tròn (O) nên Ax ⊥ AB, do đó \(\widehat {xAB} = 90^\circ \)
Xét tam giác AOM vuông tại A có đường cao AI, theo hệ thức lượng trong tam giác vuông ta có: OA2 = OI.OM
Mà OA = R (bán kính đường tròn) nên OI.OM = R2.
Theo bài, R = 6 cm và OM = 2R
Do đó \(OI = \frac{{{R^2}}}{{OM}} = \frac{{{R^2}}}{{2R}} = \frac{R}{2} = 3\left( {cm} \right)\).
c) Ta có điểm C nằm trên đường tròn (O), đường kính AB nên \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn), do đó AC ⊥ BC tại C.
Lại có OI ⊥ AC tại I
Suy ra OI // BC nên \(\widehat {AOM} = \widehat {ABC}\)
Hay \(\widehat {AOM} = \widehat {HBC}\)
Xét DAMO và DHCB có:
\(\widehat {MAO} = \widehat {CHB} = 90^\circ \) và \(\widehat {AOM} = \widehat {HBC}\)
Suy ra .
Gọi N là giao điểm của BC và Ax.
Xét DABN có OM // BN và O là trung điểm của AB nên M là trung điểm của AN.
Do CH // AN, theo hệ quả định lí Talet ta có: \(\frac{{HK}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KC}}{{MN}}\)
Do đó \(\frac{{HK}}{{AM}} = \frac{{KC}}{{MN}}\), mà AM = MN (do M là trung điểm của AN)
Suy ra HK = KC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1
Û m ≠ ‒2.
• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û \(m \ne - \frac{1}{2}\).
Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.
Khi đó 0 = (2m + 1)xA – 2m – 3
Þ \({x_A} = \frac{{2m + 3}}{{2m + 1}}\). Suy ra \(A\left( {\frac{{2m + 3}}{{2m + 1}};0} \right)\).
• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.
Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.
Khi đó 0 = (m – 1)xB + m
Þ \({x_B} = \frac{{ - m}}{{m - 1}}\). Suy ra \(B\left( {\frac{{ - m}}{{m - 1}};0} \right)\).
Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.
\( \Leftrightarrow \frac{{2m + 3}}{{2m + 1}} = \frac{{ - m}}{{m - 1}}\)
Þ (2m + 3).(m – 1) = (2m + 1).(‒m)
Û 2m2 + m – 3 = –2m2 – m
Û 4m2 + 2m – 3 = 0
Û \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) (thỏa mãn).
Vậy \(m = \frac{{ - 1 \pm \sqrt {13} }}{4}\) thỏa mãn yêu cầu đề bài.
Lời giải
Lời giải
Phương trình hoành độ giao điểm của đồ thị hàm số (1) và đường thẳng y = 4x + m là:
2x2 – 3x – 5 = 4x + m
Û 2x2 – 7x – 5 – m = 0 (*)
Để đồ thị hàm số (1) cắt đường thẳng y = 4x + m tại hai điểm phân biệt A(x1; y1), B(x2; y2) thì phương trình (*) phải có hai nghiệm phân biệt x1, x2
Û D > 0
Û (–7)2 – 4.2.(– 5 – m) > 0
Û 49 + 40 + 8m > 0
\( \Leftrightarrow m > \frac{{ - 89}}{8}\).
Khi đó, theo hệ thức Viet ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{ - b}}{a} = \frac{7}{2}}\\{{x_1}{x_2} = \frac{c}{a} = \frac{{ - m - 5}}{2}}\end{array}} \right.\)
Theo bài, \(2x_1^2 + 2x_2^2 = 3{x_1}{x_2} + 7\)
\( \Leftrightarrow 2\left( {x_1^2 + x_2^2} \right) - 3{x_1}{x_2} = 7\)
\( \Leftrightarrow 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] - 3{x_1}{x_2} = 7\)
\( \Leftrightarrow 2{\left( {{x_1} + {x_2}} \right)^2} - 7{x_1}{x_2} = 7\)
\( \Leftrightarrow 2 \cdot {\left( {\frac{7}{2}} \right)^2} - 7.\frac{{ - m - 5}}{2} = 7\)
\( \Leftrightarrow \frac{{49}}{2} + \frac{{7\left( {m + 5} \right)}}{2} = 7\)
\( \Leftrightarrow 49 + 7m + 35 = 14\)
\( \Leftrightarrow 7m = - 70\)
\( \Leftrightarrow m = - 10\) (thỏa mãn)
Vậy m = –10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Trang Kieu
17:17 - 25/03/2025
Giúp
Trường mầm non Liên Cơ Bùi Thị Tâm
21:42 - 22/10/2024
Cho nửa đường tròn (O; R) đường kính AB. Điểm C thuộc nửa đường tròn sao cho AC > CB, C khác A và B. Kẻ CH vuông góc với AB tại H. Kẻ OI vuông góc với AC tại I.
a) Chứng minh bốn điểm C, H, O, I cùng thuộc một đường tròn.
b) Kẻ tiếp tuyến Ax của đường tròn (O), tia OI cắt Ax tại M, chứng minh = AB^2/4. Tính
c) MC là tiếp tuyền đường trong (O)