Quảng cáo
Trả lời:

Giả thiết, kết luận của Định lí 2.
a)
GT |
Hình bình hành ABCD có AB = BC. |
KL |
ABCD là hình thoi. |
Ta có thể viết giả thiết đối với các cặp cạnh kề khác, chẳng hạn như:
Hình bình hành ABCD có BC = CD hoặc CD = DA hoặc DA = AB.
b)
GT |
Hình bình hành ABCD có AC ⊥ BD. |
KL |
ABCD là hình thoi. |
c)
GT |
Hình bình hành ABCD có . |
KL |
ABCD là hình thoi. |
Ta có thể viết giả thiết tương tự đối với tia phân giác góc B hoặc góc C hoặc góc D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình thoi có bốn cạnh bằng nhau nên ta suy ra hai cặp cạnh đối bằng nhau.
Ta suy ra tính chất hình thoi dựa vào tính chất của hình bình hành như sau:
- Hình thoi có hai góc đối bằng nhau.
- Hình thoi có các cặp cạnh đối song song.
- Hình thoi có hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Lời giải
* Xét Hình 3.55a)
Tứ giác ABCD có AB = CD; AD = BC.
Suy ra tứ giác ABCD là hình bình hành.
* Xét Hình 3.55b)
Tứ giác EFGH có hai đường chéo EG và FH cắt nhau tại trung điểm của mỗi đường.
Suy ra tứ giác EFGH là hình bình hành.
Hình bình hành EFGH có hai đường chéo vuông góc với nhau
Do đó tứ giác EFGH là hình thoi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.