Câu hỏi:
12/07/2024 1,387b) Cho hình thang cân MNPQ có hai đáy là MN và PQ (Hỉnh 6b). So sánh MP và NQ. Giải thích.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Áp dụng kết quả của phần ii) câu a) ở trên cho hình thang cân MNPQ ta có MQ = NP.
Xét hình thang cân MNPQ (MN // QP) có .
Xét DMNQ và DNMP có:
MQ = NP (chứng minh trên);
(chứng minh trên);
MN là cạnh chung.
Do đó DMNQ = DNMP (c.g.c)
Suy ra NQ = MP (hai cạnh tương ứng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ giác ABCD có AB = AD, BD là tia phân giác của góc B. Chứng minh rằng ABCD là hình thang.
Câu 2:
Cho tam giác nhọn ABC có AH là đường cao. Tia phân giác của góc B cắt AC tại M. Từ M kẻ đường thẳng vuông góc với AH và cắt AB tại N. Chứng minh rằng:
a) Tứ giác BCMN là hình thang;
b) BN = MN.
Câu 4:
Một khung cửa sổ hình thang cân có chiều cao 3 m, hai đáy là 3 m và 1 m (Hình 9). Tìm độ dài hai cạnh bên và hai đường chéo.
Câu 5:
Cho hình thang cân ABCD có AB // CD. Qua giao điểm E của AC và BD, ta vẽ đường thẳng song song với AB và cắt AD, BC lần lượt tại F và G (Hình 16). Chứng minh rằng EG là tia phân giác của góc CEB.
Câu 6:
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy điểm E sao cho BE = BA.
a) Chứng minh rằng DABD = DEBD.
Câu 7:
Tìm các góc chưa biết của hình thang MNPQ có hai đáy là MN và QP trong mỗi trường hợp sau và nêu nhận xét của em.
a) và .
về câu hỏi!