Câu hỏi:

12/07/2024 5,618

Mặt cắt của một li giấy đựng bỏng ngô có dạng hình thang cân MNPQ (Hình 13) với hai đáy MN = 6 cm, PQ = 10 cm và độ dài hai đường chéo MP = NQ = 82 cm. Tính độ dài đường cao và cạnh bên của hình thang.

Mặt cắt của một li giấy đựng bỏng ngô có dạng hình thang cân MNPQ (Hình 13) với hai đáy MN = 6 cm, PQ = 10 cm và độ dài hai đường chéo (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Mặt cắt của một li giấy đựng bỏng ngô có dạng hình thang cân MNPQ (Hình 13) với hai đáy MN = 6 cm, PQ = 10 cm và độ dài hai đường chéo (ảnh 2)

• MNPQ là hình thang cân nên MN // QP; MQ = NP; MQP^=NPQ^ (tính chất hình thang cân).

• Ta có: MN // QP (chứng minh trên) và NK QP (giả thiết)

Suy ra NK MN hay MNK^=90°.

Xét DMHK và DKNM có:

MHK^=KNM^=90°;

MK là cạnh huyền chung;

MKH^=KMN^ (hai góc so le trong của QP // MN).

Do đó DMHK = DKNM (cạnh huyền – góc nhọn)

Suy ra HK = NM = 6 cm (hai cạnh tương ứng).

• Xét DMHQ và DNKP có:

MHQ^=NKP^=90°;

MQ = NP (chứng minh trên);

MQH^=NPK^ (chứng minh trên).

Do đó DMHQ = DNKP (cạnh huyền – góc nhọn).

Suy ra QH = PK (hai cạnh tương ứng).

Mà QH + HK + PK = QP

Hay 2QH = QP – HK

Khi đó QH = PK = QPHK2=1062=2cm 

Nên HP = HK + KP = 6 + 2 = 8 (cm).

• Áp dụng định lí Pythagore vào DMHP vuông tại H, ta có:

MP2 = MH2 + HP2

Suy ra MH2 = MP2 – HP282282=12864=64=82

Do đó MH = 8 cm.

Áp dụng định lí Pythagore vào DMHQ vuông tại H, ta có:

MQ2 = MH2 + HQ2 = 82 + 22 = 64 + 4 = 68

Suy ra MQ=217 (cm).

Vậy hình thang cân MNPQ có độ dài đường cao là MH = NK = 8 cm; độ dài cạnh bên là MQ = NP = 217 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có AH là đường cao. Tia phân giác của góc B cắt AC tại M. Từ M kẻ đường thẳng vuông góc với AH và cắt AB tại N. Chứng minh rằng:

a) Tứ giác BCMN là hình thang;

b) BN = MN.

Xem đáp án » 12/07/2024 13,935

Câu 2:

Cho tứ giác ABCD có AB = AD, BD là tia phân giác của góc B. Chứng minh rằng ABCD là hình thang.

Cho tứ giác ABCD có AB = AD, BD là tia phân giác của góc B. Chứng minh rằng ABCD là hình thang. (ảnh 1)

Xem đáp án » 12/07/2024 13,805

Câu 3:

Tìm x và y ở các hình sau.

Tìm x và y ở các hình sau.  (ảnh 1)

Xem đáp án » 12/07/2024 8,942

Câu 4:

Một khung cửa sổ hình thang cân có chiều cao 3 m, hai đáy là 3 m và 1 m (Hình 9). Tìm độ dài hai cạnh bên và hai đường chéo.

Một khung cửa sổ hình thang cân có chiều cao 3 m, hai đáy là 3 m và 1 m (Hình 9). Tìm độ dài hai cạnh bên và hai đường chéo. (ảnh 1)

Xem đáp án » 12/07/2024 7,644

Câu 5:

Cho hình thang cân ABCD có AB // CD. Qua giao điểm E của AC và BD, ta vẽ đường thẳng song song với AB và cắt AD, BC lần lượt tại F và G (Hình 16). Chứng minh rằng EG là tia phân giác của góc CEB.

Cho hình thang cân ABCD có AB // CD. Qua giao điểm E của AC và BD, ta vẽ đường thẳng song song với AB và cắt AD, BC lần lượt tại F và G (ảnh 1)

Xem đáp án » 12/07/2024 6,954

Câu 6:

Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy điểm E sao cho BE = BA.

a) Chứng minh rằng DABD = DEBD.

Xem đáp án » 12/07/2024 6,602

Câu 7:

Tìm các góc chưa biết của hình thang MNPQ có hai đáy là MN và QP trong mỗi trường hợp sau và nêu nhận xét của em.

a) Q^=90° N^=125°.

Xem đáp án » 13/07/2024 5,806

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store