Câu hỏi:

12/07/2024 2,678 Lưu

b) Kẻ đường cao AH của tam giác ABC. Chứng minh rằng tứ giác ADEH là hình thang vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Do DABD = DEBD (câu a) nên BAD^=BED^=90° (hai góc tương ứng).

Do đó DE BC

Mà AH BC (giả thiết) nên DE // AH.

Tứ giác ADEH có DE // AH nên là hình thang

Lại có AHE^=90° nên ADEH là hình thang vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ giác ABCD có AB = AD, BD là tia phân giác của góc B. Chứng minh rằng ABCD là hình thang. (ảnh 2)

Xét DABD có AB = AD nên là tam giác cân tại A

Suy ra ABD^=ADB^ (tính chất tam giác cân)

Vì BD là tia phân giác của góc B nên ABD^=CBD^ (tính chất tia phân giác của một góc)

Suy ra CBD^=ADB^=ABD^

Mà hai góc này ở vị trí so le trong nên AD // BC.

Xét tứ giác ABCD có AD // BC nên là hình thang.

Vậy ABCD là hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP