Câu hỏi:
12/07/2024 3,359Mặt trước của một công trình xây dựng được làm bằng kính có dạng hình bình hành EFGH với M là giao điểm của hai đường chéo (Hình 6). Cho biết EF = 40 m, EM = 36 m, HM = 16 m. Tính độ dài cạnh HG và độ dài hai đường chéo.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
EFGH là hình bình hành nên ta có:
• HG = EF = 40 m;
• M là trung điểm của EG nên EG = 2EM = 2.36 = 72 (m);
• M là trung điểm của FH nên FH = 2MH = 2.16 = 32 (m).
Vậy HG = 40 m và độ dài hai đường chéo lần lượt là EG = 72 m, FH = 32 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.
a) Chứng minh tứ giác ABDC là hình thoi.
Câu 2:
Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Câu 3:
Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.
a) Chứng minh rằng tứ giác EBFD là hình bình hành.
Câu 4:
Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.
a) Chứng minh tứ giác AEFI là hình thang.
Câu 5:
Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu biết hai đường chéo vuông góc tại trung điểm của mỗi đường.
Câu 7:
Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?
về câu hỏi!