Câu hỏi:
12/07/2024 1,996Cho tứ giác ABCD có P là giao điểm của hai đường chéo. Giải thích tại sao AB // CD và AD // BC trong mỗi trường hợp sau:
Trường hợp 1: AB = CD và AD = BC (Hình 7a).
Trường hợp 2: AB // CD và AB = CD (Hình 7b).
Trường hợp 3: AD // BC và AD = BC (Hình 7c).
Trường hợp 4: (Hình 7d).
Trường hợp 5: PA = PC, PB = PD (Hình 7e).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• Hình 7a):
Xét DABC và DCDA có:
AB = CD; BC = DA; AC là cạnh chung
Do đó DABC = DCDA (c.c.c)
Suy ra và (các cặp góc tương ứng).
Vì và hai góc này ở vị trí so le trong nên AB // CD.
Vì và hai góc này ở vị trí so le trong nên AD // BC.
• Hình 7b):
Ta có và hai góc này ở vị trí so le trong nên AB // CD.
Xét DABC và DCDA có:
AC là cạnh chung; ; AB = CD
Do đó DABC = DCDA (c.g.c)
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AD // BC.
• Hình 7c):
Ta có: và hai góc này ở vị trí so le trong nên AD // BC.
Xét DABC và DCDA có:
AC là cạnh chung; ; BC = AD
Do đó DABC = DCDA (c.g.c)
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AB // CD.
• Hình 7d):
Xét tứ giác ABCD ta có (định lí tổng các góc của một tứ giác)
Mà nên ta có
Suy ra và
Do đó AD // BC và AB // CD.
• Hình 7e):
Xét DPAB và DPCD có:
PA = PC; (đối đỉnh); PB = PD
Do đó DPAB = DPCD (c.g.c)
Suy ra (hai góc tương ứng)
Hay , mà hai góc này ở vị trí so le trong nên AB // CD.
Tương tự ta cũng chứng minh được DPAD = DPCB (c.g.c)
Suy ra (hai góc tương ứng)
Hay , mà hai góc này ở vị trí so le trong nên AD // BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.
a) Chứng minh tứ giác ABDC là hình thoi.
Câu 2:
Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Câu 3:
Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.
a) Chứng minh rằng tứ giác EBFD là hình bình hành.
Câu 4:
Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.
a) Chứng minh tứ giác AEFI là hình thang.
Câu 5:
Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu biết hai đường chéo vuông góc tại trung điểm của mỗi đường.
Câu 7:
Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?
về câu hỏi!