Câu hỏi:

12/07/2024 4,655 Lưu

Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 20).

a) Chứng minh tứ giác AHCK là hình bình hành.

Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 20).  a) Chứng minh tứ giác AHCK là hình bình hành.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Do ABCD là hình bình hành nên AD // BC và AD = BC.

Do AD // BC nên ADB^=CBD^ (so le trong)

Xét DADH và DCBK có:

AHD^=CKB^=90°;

AD = BC (chứng minh trên);

ADH^=CBK^ (do ADB^=CBD^).

Do đó DADH = DCBK (cạnh huyền – góc nhọn).

Suy ra AH = CK (hai cạnh tương ứng).

Ta có AH DB và CK DB nên AH // CK.

Tứ giác AHCK có AH // CK và AH = CK nên AHCK là hình bình hành (dấu hiệu nhận biết).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có D đối xứng với A qua BC nên M là trung điểm của AD và AD BC.

Tứ giác ABDC có hai đường chéo AD và BD cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Lại có hai đường chéo AD BC nên hình bình hành ABDC là hình thoi.

Lời giải

a)

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. a) Chứng minh rằng tứ giác EBFD là hình bình hành.  (ảnh 1)

ABCD là hình bình hành nên AD = BC và AD // BC.

Mà E là trung điểm của AD nên AE = ED;

       F là trung điểm của BC nên BF = FC.

Suy ra DE = BF.

Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP