Câu hỏi:

11/07/2024 279

Chứng minh hằng đẳng thức:

(a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Biến đổi vế trái:

(a + b + c)3 = [(a + b) + c]3

= (a + b)3 + 3(a + b)2c + 3(a +b)c2 + c3

= a3 + 3a2b + 3ab2 + b3 + 3(a2 + 2ab + b2)c + 3ac2 + 3bc2 + c3

= a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2 + c3

= a3 + b3 + c3 + 3a2b + 3ab2 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2

= a3 + b3 + c3 + (3a2b + 3ab2) + (3a2c + 3abc) + (3abc + 3bc2) + (3ac2 + 3bc2)

= a3 + b3 + c3 + 3ab(a + b) + 3ac(a + b) + 3bc(a + c) + 3c2(a + b)

= a3 + b3 + c3 + (a + b)(3ab + 3ac + 3bc + 3c2)

= a3 + b3 + c3 + (a + b)[(3ab + 3ac) + (3bc + 3c2)]

= a3 + b3 + c3 + (a + b)[3a(b + c) + 3c(b + c)]

= a3 + b3 + c3 + 3(a + b)(b + c)(a + c) (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

x2 – 2(m + 1)x + 4m = 0 (1).

a) Thay m = 2 vào (1) ta được:

x2 – 6x + 8 = 0

\(\Delta '\) = 32 – 8 = 1 > 0

Vậy với m = 2 phương trình (1) có hai nghiệm phân biệt:

x1 = 3 + 1 = 4; x2 = 3 – 1 = 2.

b) Phương trình (1) có:

\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1.4m\)

= m2 + 2m + 1 – 4m = m2 – 2m + 1 = (m – 1)2 ≥ 0 \(\forall x \in \mathbb{R}\).

Suy ra phương trình (1) luôn có nghiệm.

c) Theo b) ta có phương trình (1) luôn có nghiệm.

Áp dụng hệ thức Vi−ét, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)(2)\\{x_1}{x_2} = 4m(3)\end{array} \right.\)

Theo để bài ta có:

x1(1 + x2) + x2(1 + x1) = 7

\( \Leftrightarrow \)x1 + x1x2 + x2 + x1x2 = 7

\( \Leftrightarrow \)(x1 + x2) + 2x1x2 = 7 (4)

Thay (2) và (3) vào (4) ta được:

2(m + 1) + 2.4m = 7

\( \Leftrightarrow \)2m + 2 + 8m = 7

\( \Leftrightarrow \) 10m = 5

\( \Leftrightarrow m = \frac{1}{2}\)

Vậy với \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP