Câu hỏi:

19/08/2025 9,708 Lưu

Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.

a) Chứng minh ∆ABC vuông và tính độ dài AC.

b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).

c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).

d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho (ảnh 1)

a) OA = OB = 4, OH = 1 \( \Rightarrow \) AH = 3, HB = 5

Ta có: AB là đường kính của (O) \( \Rightarrow \)\(\widehat {ACB} = 90^\circ \)

\( \Rightarrow \)ABC vuông tại C.

Mà CH\( \bot \)AB \( \Rightarrow \)CH2 = HA. HB = 15

\( \Rightarrow \)AC2 = CH2 + HA2 = 24 \( \Rightarrow \)\(AC = 2\sqrt 6 \).

b) Vì AB\( \bot \)CD \( \Rightarrow \)AB là trung trực của CD

\( \Rightarrow \)BC = BD \( \Rightarrow \)CBD cân tại B.

Lại có: \(\widehat {EAC} = \widehat {CBA} = \widehat {HBD}\)

\( \Rightarrow \)ECA DHB (g.g)

\( \Rightarrow \frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).

c) Vì I, O là trung điểm AE, AB

\( \Rightarrow \)IO // EB \( \Rightarrow \)IO\( \bot \)AC (BE\( \bot \)AC) \( \Rightarrow \)A, C đối xứng với nhau qua OI

\( \Rightarrow \)\(\widehat {ICO} = \widehat {IAO} = 90^\circ \)

\( \Rightarrow \)IC là tiếp tuyến của (O).

\( \Rightarrow \)\(\widehat {ICQ} = \widehat {CBI}\)

d) Gọi AF ∩ BI = {G}

Vì IC, IA là tiếp tuyến của (O) \( \Rightarrow \)IC = IA tương tự FC = FB

Mà AI // BF \( \Rightarrow \)\(\frac{{IG}}{{GB}} = \frac{{IA}}{{BF}} = \frac{{CI}}{{CF}}\)

\( \Rightarrow \)GC // BF \( \Rightarrow \)GC\( \bot \)AB \( \Rightarrow \)C, G, H thẳng hàng

\( \Rightarrow \)IB, HC, AF đồng quy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và  (ảnh 1)

a) Áp dụng hệ thức lượng trong tam giác, ta có:
• Xét \(\Delta AHC\): AH2 = AF.AC

• Xét \(\Delta AHB\): AH2 = AE.AB

Do đó AE.AB = AF. AC

b) Ta có: AH2 = AE.AB

\( \Rightarrow AE = \frac{{A{H^2}}}{{AB}} = \frac{{{3^3}}}{4} = 2,25\) (cm)

Mà AE + BE = AB

\( \Rightarrow \)BE = AB – AE

= 4 – 2,24 = 1,75 (cm)

c) \(\Delta AHC\) vuông tại H

\( \Rightarrow \cos \widehat {HAC} = \frac{{AH}}{{AC}}\)

\(AC = \frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm)

Theo ý a) ta có: AE.AB = AF.AC

\( \Rightarrow AF = \frac{{AE.AB}}{{AC}} = \frac{{2,25.4}}{{2\sqrt 3 }} = \frac{{3\sqrt 3 }}{2}\)(cm)

FC = AC – AF

\( = 2\sqrt 3 - \frac{{3\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\)(cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP