Câu hỏi:

20/04/2023 537

Số nghiệm của phương trình 2tanx – 2cotx – 3 = 0 trong khoảng \(\left( { - \frac{\pi }{2};\pi } \right)\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Điều kiện \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}\) (k ℤ).

Ta có: 2tanx – 2cotx – 3 = 0

\(2\tan x - 2\frac{1}{{{\mathop{\rm t}\nolimits} anx}} - 3 = 0\)

2tan2x – 3tanx – 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}\tan x = 2\\\tan x = \frac{{ - 1}}{2}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \arctan 2 + k\pi \\x = arc\tan \left( {\frac{{ - 1}}{2}} \right) + k\pi \end{array} \right.\)(k ℤ)

+) x = arctan2 + kπ (k ℤ).

Khi đó \( - \frac{\pi }{2} < \arctan 2 + k\pi < \pi \)

\( \Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan 2}}{\pi } < k < \frac{{\pi - \arctan 2}}{\pi }\)

\( \Rightarrow \)−0,85 < k < 0,65

\( \Rightarrow \)k = 0 ( do k ℤ)

\( \Rightarrow \)x = arctan2.

+) \(x = \arctan \left( { - \frac{1}{2}} \right) + k\pi \)( k ℤ)

Khi đó \( - \frac{\pi }{2} < \arctan \left( { - \frac{1}{2}} \right) + k\pi < \pi \)

\( \Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan \left( { - \frac{1}{2}} \right)}}{\pi } < k < \frac{{\pi - \arctan \left( { - \frac{1}{2}} \right)}}{\pi }\)

\( \Rightarrow \)−0,35 < k < 1,15

\( \Rightarrow \)k {0; 1}

\( \Rightarrow x \in \left\{ {\arctan \left( { - \frac{1}{2}} \right);\arctan \left( { - \frac{1}{2}} \right) + \pi } \right\}\)

Kết hợp với điều kiện ta suy ra phương trình có 3 nghiệm là x = arctan2; \(\arctan \left( { - \frac{1}{2}} \right)\)\(\arctan \left( { - \frac{1}{2}} \right) + \pi \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

x2 – 2(m + 1)x + 4m = 0 (1).

a) Thay m = 2 vào (1) ta được:

x2 – 6x + 8 = 0

\(\Delta '\) = 32 – 8 = 1 > 0

Vậy với m = 2 phương trình (1) có hai nghiệm phân biệt:

x1 = 3 + 1 = 4; x2 = 3 – 1 = 2.

b) Phương trình (1) có:

\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1.4m\)

= m2 + 2m + 1 – 4m = m2 – 2m + 1 = (m – 1)2 ≥ 0 \(\forall x \in \mathbb{R}\).

Suy ra phương trình (1) luôn có nghiệm.

c) Theo b) ta có phương trình (1) luôn có nghiệm.

Áp dụng hệ thức Vi−ét, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)(2)\\{x_1}{x_2} = 4m(3)\end{array} \right.\)

Theo để bài ta có:

x1(1 + x2) + x2(1 + x1) = 7

\( \Leftrightarrow \)x1 + x1x2 + x2 + x1x2 = 7

\( \Leftrightarrow \)(x1 + x2) + 2x1x2 = 7 (4)

Thay (2) và (3) vào (4) ta được:

2(m + 1) + 2.4m = 7

\( \Leftrightarrow \)2m + 2 + 8m = 7

\( \Leftrightarrow \) 10m = 5

\( \Leftrightarrow m = \frac{1}{2}\)

Vậy với \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP