Số nghiệm của phương trình 2tanx – 2cotx – 3 = 0 trong khoảng \(\left( { - \frac{\pi }{2};\pi } \right)\) là:
Số nghiệm của phương trình 2tanx – 2cotx – 3 = 0 trong khoảng \(\left( { - \frac{\pi }{2};\pi } \right)\) là:
A. 2;
B. 1;
C. 4;
D. 3.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Điều kiện \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}\) (k ∈ ℤ).
Ta có: 2tanx – 2cotx – 3 = 0
⇔ \(2\tan x - 2\frac{1}{{{\mathop{\rm t}\nolimits} anx}} - 3 = 0\)
⇔ 2tan2x – 3tanx – 2 = 0
\( \Leftrightarrow \left[ \begin{array}{l}\tan x = 2\\\tan x = \frac{{ - 1}}{2}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \arctan 2 + k\pi \\x = arc\tan \left( {\frac{{ - 1}}{2}} \right) + k\pi \end{array} \right.\)(k ∈ ℤ)
+) x = arctan2 + kπ (k ∈ ℤ).
Khi đó \( - \frac{\pi }{2} < \arctan 2 + k\pi < \pi \)
\( \Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan 2}}{\pi } < k < \frac{{\pi - \arctan 2}}{\pi }\)
\( \Rightarrow \)−0,85 < k < 0,65
\( \Rightarrow \)k = 0 ( do k ∈ ℤ)
\( \Rightarrow \)x = arctan2.
+) \(x = \arctan \left( { - \frac{1}{2}} \right) + k\pi \)( k ∈ ℤ)
Khi đó \( - \frac{\pi }{2} < \arctan \left( { - \frac{1}{2}} \right) + k\pi < \pi \)
\( \Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan \left( { - \frac{1}{2}} \right)}}{\pi } < k < \frac{{\pi - \arctan \left( { - \frac{1}{2}} \right)}}{\pi }\)
\( \Rightarrow \)−0,35 < k < 1,15
\( \Rightarrow \)k ∈ {0; 1}
\( \Rightarrow x \in \left\{ {\arctan \left( { - \frac{1}{2}} \right);\arctan \left( { - \frac{1}{2}} \right) + \pi } \right\}\)
Kết hợp với điều kiện ta suy ra phương trình có 3 nghiệm là x = arctan2; \(\arctan \left( { - \frac{1}{2}} \right)\) và \(\arctan \left( { - \frac{1}{2}} \right) + \pi \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).
Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C ∈ MN)
Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác BCHK nội tiếp đường tròn.
b) Xét \(\Delta ACH\) và \(\Delta AKB\) có:
\(\widehat {BAK}\) chung
\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)
Suy ra \(\Delta AHC\) ᔕ \(\Delta AKB\)(g.g)
\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)
\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)
Lời giải
a) Áp dụng hệ thức lượng trong tam giác, ta có:
• Xét \(\Delta AHC\): AH2 = AF.AC
• Xét \(\Delta AHB\): AH2 = AE.AB
Do đó AE.AB = AF. AC
b) Ta có: AH2 = AE.AB
\( \Rightarrow AE = \frac{{A{H^2}}}{{AB}} = \frac{{{3^3}}}{4} = 2,25\) (cm)
Mà AE + BE = AB
\( \Rightarrow \)BE = AB – AE
= 4 – 2,24 = 1,75 (cm)
c) \(\Delta AHC\) vuông tại H
\( \Rightarrow \cos \widehat {HAC} = \frac{{AH}}{{AC}}\)
\(AC = \frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm)
Theo ý a) ta có: AE.AB = AF.AC
\( \Rightarrow AF = \frac{{AE.AB}}{{AC}} = \frac{{2,25.4}}{{2\sqrt 3 }} = \frac{{3\sqrt 3 }}{2}\)(cm)
FC = AC – AF
\( = 2\sqrt 3 - \frac{{3\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\)(cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.