Câu hỏi:

20/04/2023 698 Lưu

Số nghiệm của phương trình 2tanx – 2cotx – 3 = 0 trong khoảng \(\left( { - \frac{\pi }{2};\pi } \right)\) là:

A. 2;

B. 1;

C. 4;

D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Điều kiện \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}\) (k ℤ).

Ta có: 2tanx – 2cotx – 3 = 0

\(2\tan x - 2\frac{1}{{{\mathop{\rm t}\nolimits} anx}} - 3 = 0\)

2tan2x – 3tanx – 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}\tan x = 2\\\tan x = \frac{{ - 1}}{2}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \arctan 2 + k\pi \\x = arc\tan \left( {\frac{{ - 1}}{2}} \right) + k\pi \end{array} \right.\)(k ℤ)

+) x = arctan2 + kπ (k ℤ).

Khi đó \( - \frac{\pi }{2} < \arctan 2 + k\pi < \pi \)

\( \Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan 2}}{\pi } < k < \frac{{\pi - \arctan 2}}{\pi }\)

\( \Rightarrow \)−0,85 < k < 0,65

\( \Rightarrow \)k = 0 ( do k ℤ)

\( \Rightarrow \)x = arctan2.

+) \(x = \arctan \left( { - \frac{1}{2}} \right) + k\pi \)( k ℤ)

Khi đó \( - \frac{\pi }{2} < \arctan \left( { - \frac{1}{2}} \right) + k\pi < \pi \)

\( \Leftrightarrow \frac{{ - \frac{\pi }{2} - \arctan \left( { - \frac{1}{2}} \right)}}{\pi } < k < \frac{{\pi - \arctan \left( { - \frac{1}{2}} \right)}}{\pi }\)

\( \Rightarrow \)−0,35 < k < 1,15

\( \Rightarrow \)k {0; 1}

\( \Rightarrow x \in \left\{ {\arctan \left( { - \frac{1}{2}} \right);\arctan \left( { - \frac{1}{2}} \right) + \pi } \right\}\)

Kết hợp với điều kiện ta suy ra phương trình có 3 nghiệm là x = arctan2; \(\arctan \left( { - \frac{1}{2}} \right)\)\(\arctan \left( { - \frac{1}{2}} \right) + \pi \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và  (ảnh 1)

a) Áp dụng hệ thức lượng trong tam giác, ta có:
• Xét \(\Delta AHC\): AH2 = AF.AC

• Xét \(\Delta AHB\): AH2 = AE.AB

Do đó AE.AB = AF. AC

b) Ta có: AH2 = AE.AB

\( \Rightarrow AE = \frac{{A{H^2}}}{{AB}} = \frac{{{3^3}}}{4} = 2,25\) (cm)

Mà AE + BE = AB

\( \Rightarrow \)BE = AB – AE

= 4 – 2,24 = 1,75 (cm)

c) \(\Delta AHC\) vuông tại H

\( \Rightarrow \cos \widehat {HAC} = \frac{{AH}}{{AC}}\)

\(AC = \frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm)

Theo ý a) ta có: AE.AB = AF.AC

\( \Rightarrow AF = \frac{{AE.AB}}{{AC}} = \frac{{2,25.4}}{{2\sqrt 3 }} = \frac{{3\sqrt 3 }}{2}\)(cm)

FC = AC – AF

\( = 2\sqrt 3 - \frac{{3\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\)(cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP