Câu hỏi:

13/07/2024 533

Cho đường tròn (O; R) có đường kính AB và điểm M thuộc đường tròn sao cho MA < MB (M khác A,B). Trên tia đối của tia MA lấy điểm N sao cho MN = MA. NB cắt (O) tại C, AC cắt BM tại E. Chứng minh: EM.EB = EC.EN.


Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R) có đường kính AB và điểm M thuộc đường tròn sao cho  (ảnh 1)

Vì AB là đường kính của (O) nên ta có:

\(\widehat {AMB} = \widehat {ACB} = 90^\circ \)

\( \Rightarrow \)MB\( \bot \)AN, AC \( \bot \)BN.

Xét \(\Delta \)NEA có EM\( \bot \)AN

Mà AM là trung tuyến của \(\Delta AME\)

Suy ra EM đồng thời cũng là đường phân giác:

\(\widehat {MEN} = \widehat {MEA}\).

\(\widehat {MEA} = \widehat {CEB}\) (đối đỉnh)

\( \Rightarrow \widehat {MEN} = \widehat {CEB}\)

Xét \(\Delta MEN\)\(\Delta BEC\) có:

\(\widehat {ECB} = \widehat {NME}\,\,( = 90^\circ )\)

\(\widehat {CEB} = \widehat {NEM}\)

\( \Rightarrow \Delta ECB\) \(\Delta EMN\)(g.g)

\( \Rightarrow \frac{{EC}}{{EM}} = \frac{{EB}}{{EN}}\)

\( \Rightarrow \) EM.EB = EC.EN (đpcm)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN.

a) Chứng minh tứ giác BCHK  nội tiếp đường tròn.

b) Chứng minh AK.AH = R2.

Xem đáp án » 13/07/2024 14,903

Câu 2:

Cho tam giác ABC có trọng tâm G và tâm đường tròn ngoại tiếp O thỏa mãn \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \). Hỏi trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

1) \[\overrightarrow {OG} = \vec 0\].

2) Tam giác ABC là tam giác vuông cân.

3) Tam giác ABC là tam giác đều.

4) Tam giác ABC là tam giác cân.

Xem đáp án » 13/07/2024 13,765

Câu 3:

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.

a) CM: AE.AB = AF.AC;

b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;

c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.

Xem đáp án » 13/07/2024 10,592

Câu 4:

Cho phương trình: x2 – 2(m + 1)x + 4m = 0 (1) (m là tham số)

a) Giải phương trình (1) với m = 2.

b) Chứng tỏ phương trình (1) luôn có nghiệm x1; x2 mọi m.

c) Tìm giá trị của m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn:

x1(1 + x2) + x2(1 + x1) = 7.

Xem đáp án » 13/07/2024 9,947

Câu 5:

Một nhóm 10 học sinh gồm 5 học sinh nam trong đó có An và 5 học sinh nữ trong đó có Bình được xếp ngồi vào 10 cái ghế trên một hàng ngang. Hỏi có bao nhiêu cách sắp xếp nam và nữ ngồi xen kẽ, đồng thời An không ngồi cạnh Bình?

Xem đáp án » 20/04/2023 9,394

Câu 6:

Cho phương trình: x2 – 2x + m = 0.

a) Tìm m để phương trình có nghiệm.

b) Chứng minh rằng với mọi m phương trình không thể có hai nghiệm cùng là số âm.

Xem đáp án » 13/07/2024 8,665

Câu 7:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M là trung điểm của SB, G là trọng tâm tam giác SAD. Tìm giao tuyến mp(SGM) với mp(ABCD). Tìm giao điểm I của GM và mp(ABCD).

Xem đáp án » 13/07/2024 8,164