Cho đường tròn (O; R) có đường kính AB và điểm M thuộc đường tròn sao cho MA < MB (M khác A,B). Trên tia đối của tia MA lấy điểm N sao cho MN = MA. NB cắt (O) tại C, AC cắt BM tại E. Chứng minh: EM.EB = EC.EN.
Cho đường tròn (O; R) có đường kính AB và điểm M thuộc đường tròn sao cho MA < MB (M khác A,B). Trên tia đối của tia MA lấy điểm N sao cho MN = MA. NB cắt (O) tại C, AC cắt BM tại E. Chứng minh: EM.EB = EC.EN.
Quảng cáo
Trả lời:


Vì AB là đường kính của (O) nên ta có:
\(\widehat {AMB} = \widehat {ACB} = 90^\circ \)
\( \Rightarrow \)MB\( \bot \)AN, AC \( \bot \)BN.
Xét \(\Delta \)NEA có EM\( \bot \)AN
Mà AM là trung tuyến của \(\Delta AME\)
Suy ra EM đồng thời cũng là đường phân giác:
\(\widehat {MEN} = \widehat {MEA}\).
MÀ \(\widehat {MEA} = \widehat {CEB}\) (đối đỉnh)
\( \Rightarrow \widehat {MEN} = \widehat {CEB}\)
Xét \(\Delta MEN\) và \(\Delta BEC\) có:
\(\widehat {ECB} = \widehat {NME}\,\,( = 90^\circ )\)
\(\widehat {CEB} = \widehat {NEM}\)
\( \Rightarrow \Delta ECB\) ᔕ\(\Delta EMN\)(g.g)
\( \Rightarrow \frac{{EC}}{{EM}} = \frac{{EB}}{{EN}}\)
\( \Rightarrow \) EM.EB = EC.EN (đpcm)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).
Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C ∈ MN)
Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác BCHK nội tiếp đường tròn.
b) Xét \(\Delta ACH\) và \(\Delta AKB\) có:
\(\widehat {BAK}\) chung
\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)
Suy ra \(\Delta AHC\) ᔕ \(\Delta AKB\)(g.g)
\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)
\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)
Lời giải
x2 – 2(m + 1)x + 4m = 0 (1).
a) Thay m = 2 vào (1) ta được:
x2 – 6x + 8 = 0
\(\Delta '\) = 32 – 8 = 1 > 0
Vậy với m = 2 phương trình (1) có hai nghiệm phân biệt:
x1 = 3 + 1 = 4; x2 = 3 – 1 = 2.
b) Phương trình (1) có:
\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1.4m\)
= m2 + 2m + 1 – 4m = m2 – 2m + 1 = (m – 1)2 ≥ 0 \(\forall x \in \mathbb{R}\).
Suy ra phương trình (1) luôn có nghiệm.
c) Theo b) ta có phương trình (1) luôn có nghiệm.
Áp dụng hệ thức Vi−ét, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)(2)\\{x_1}{x_2} = 4m(3)\end{array} \right.\)
Theo để bài ta có:
x1(1 + x2) + x2(1 + x1) = 7
\( \Leftrightarrow \)x1 + x1x2 + x2 + x1x2 = 7
\( \Leftrightarrow \)(x1 + x2) + 2x1x2 = 7 (4)
Thay (2) và (3) vào (4) ta được:
2(m + 1) + 2.4m = 7
\( \Leftrightarrow \)2m + 2 + 8m = 7
\( \Leftrightarrow \) 10m = 5
\( \Leftrightarrow m = \frac{1}{2}\)
Vậy với \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.