Câu hỏi:

13/07/2024 2,293

Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax (ảnh 1)

Theo tính chất tiếp tuyến, ta có: Ax AB; By AB.

Suy ra: Ax // By hay AC // BD.

Suy ra tứ giác ABDC là hình thang.

Gọi I là trung điểm của CD.

Khi đó OI là đường trung bình của hình thang ABDC.

Suy ra: OI // AC OI AB.

Vì OC và OD lần lượt là phân giác của \(\widehat {AOM}\)\(\widehat {BOM}\) nên:

OC\( \bot \)OD (tính chất của hai góc kề bù)

\( \Rightarrow \widehat {COD} = 90^\circ \)

Suy ra: IC = ID = IO \( = \frac{1}{2}CD\) (tính chất tam giác vuông).

Suy ra I là tâm đường tròn đường kính CD.

Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trọng tâm G và tâm đường tròn ngoại tiếp O thỏa mãn \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \). Hỏi trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

1) \[\overrightarrow {OG} = \vec 0\].

2) Tam giác ABC là tam giác vuông cân.

3) Tam giác ABC là tam giác đều.

4) Tam giác ABC là tam giác cân.

Xem đáp án » 13/07/2024 12,935

Câu 2:

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.

a) CM: AE.AB = AF.AC;

b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;

c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.

Xem đáp án » 13/07/2024 8,751

Câu 3:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M là trung điểm của SB, G là trọng tâm tam giác SAD. Tìm giao tuyến mp(SGM) với mp(ABCD). Tìm giao điểm I của GM và mp(ABCD).

Xem đáp án » 13/07/2024 7,373

Câu 4:

Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:

Xem đáp án » 20/04/2023 7,173

Câu 5:

Một nhóm 10 học sinh gồm 5 học sinh nam trong đó có An và 5 học sinh nữ trong đó có Bình được xếp ngồi vào 10 cái ghế trên một hàng ngang. Hỏi có bao nhiêu cách sắp xếp nam và nữ ngồi xen kẽ, đồng thời An không ngồi cạnh Bình?

Xem đáp án » 20/04/2023 6,761

Câu 6:

Cho đường tròn (O) bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Xem đáp án » 13/07/2024 6,739

Câu 7:

Cho hình vẽ biết xx’ // yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\)\(\widehat {ABy}\).

Cho hình vẽ biết xx’ // yy’ và góc xAB = 70 độ. Tính số đo góc yBz' và ABy (ảnh 1)

Xem đáp án » 13/07/2024 6,692

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store