Câu hỏi:

13/07/2024 2,117

Từ một điểm M ở ngoài đường tròn tâm O vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm H (H khác A, B). Qua H kẻ đường thẳng vuông góc với OH cắt đường thẳng MA ở E, cắt đường thẳng MB ở F.

a) Chứng minh tứ giác có bốn đỉnh O, H, A, E là tứ giác nội tiếp.

b) Chứng minh tam giác OEF cân.

c) Kẻ OI vuông góc AB ( I thuộc AB). Chứng minh OI.OF = OB.OH

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ một điểm M ở ngoài đường tròn tâm O vẽ hai tiếp tuyến MA, MB với đường (ảnh 1)

a) Ta có: MA là tiếp tuyến của (O) nên:

MA\( \bot \)OA.

Mà OH\( \bot \)EF \( \Rightarrow \widehat {EAO} = \widehat {EHO} = 90^\circ \)

Suy ra O, H, A, E cùng thuộc một đường tròn (đpcm).

b) Tương tự câu a) ta có: tứ giác OHFB nội tiếp.

\( \Rightarrow \widehat {OEH} = \widehat {OAH} = \widehat {OAB} = \widehat {OBA} = \widehat {OBH} = \widehat {OFH}\)

Suy ra \(\Delta OEF\) cân tại O.

c) Theo câu a) ta có: \(\widehat {HFO} = \widehat {IBO};\,\,\widehat {OHF} = \widehat {OIB} = 90^\circ \)

\( \Rightarrow \Delta OHF\) \(\Delta OIB\) (g.g)

\( \Rightarrow \frac{{OH}}{{OI}} = \frac{{OF}}{{OB}} \Rightarrow OI.OF = OB.OH\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trọng tâm G và tâm đường tròn ngoại tiếp O thỏa mãn \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \). Hỏi trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?

1) \[\overrightarrow {OG} = \vec 0\].

2) Tam giác ABC là tam giác vuông cân.

3) Tam giác ABC là tam giác đều.

4) Tam giác ABC là tam giác cân.

Xem đáp án » 13/07/2024 13,381

Câu 2:

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.

a) CM: AE.AB = AF.AC;

b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;

c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.

Xem đáp án » 13/07/2024 9,382

Câu 3:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M là trung điểm của SB, G là trọng tâm tam giác SAD. Tìm giao tuyến mp(SGM) với mp(ABCD). Tìm giao điểm I của GM và mp(ABCD).

Xem đáp án » 13/07/2024 7,992

Câu 4:

Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:

Xem đáp án » 20/04/2023 7,753

Câu 5:

Cho hình vẽ biết xx’ // yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\)\(\widehat {ABy}\).

Cho hình vẽ biết xx’ // yy’ và góc xAB = 70 độ. Tính số đo góc yBz' và ABy (ảnh 1)

Xem đáp án » 13/07/2024 7,032

Câu 6:

Cho đường tròn (O) bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Xem đáp án » 13/07/2024 7,022

Câu 7:

Một nhóm 10 học sinh gồm 5 học sinh nam trong đó có An và 5 học sinh nữ trong đó có Bình được xếp ngồi vào 10 cái ghế trên một hàng ngang. Hỏi có bao nhiêu cách sắp xếp nam và nữ ngồi xen kẽ, đồng thời An không ngồi cạnh Bình?

Xem đáp án » 20/04/2023 6,991

Bình luận


Bình luận