Câu hỏi:

13/07/2024 3,166

Từ một điểm M ở ngoài đường tròn tâm O vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Trên đoạn thẳng AB lấy điểm H (H khác A, B). Qua H kẻ đường thẳng vuông góc với OH cắt đường thẳng MA ở E, cắt đường thẳng MB ở F.

a) Chứng minh tứ giác có bốn đỉnh O, H, A, E là tứ giác nội tiếp.

b) Chứng minh tam giác OEF cân.

c) Kẻ OI vuông góc AB ( I thuộc AB). Chứng minh OI.OF = OB.OH

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ một điểm M ở ngoài đường tròn tâm O vẽ hai tiếp tuyến MA, MB với đường (ảnh 1)

a) Ta có: MA là tiếp tuyến của (O) nên:

MA\( \bot \)OA.

Mà OH\( \bot \)EF \( \Rightarrow \widehat {EAO} = \widehat {EHO} = 90^\circ \)

Suy ra O, H, A, E cùng thuộc một đường tròn (đpcm).

b) Tương tự câu a) ta có: tứ giác OHFB nội tiếp.

\( \Rightarrow \widehat {OEH} = \widehat {OAH} = \widehat {OAB} = \widehat {OBA} = \widehat {OBH} = \widehat {OFH}\)

Suy ra \(\Delta OEF\) cân tại O.

c) Theo câu a) ta có: \(\widehat {HFO} = \widehat {IBO};\,\,\widehat {OHF} = \widehat {OIB} = 90^\circ \)

\( \Rightarrow \Delta OHF\) \(\Delta OIB\) (g.g)

\( \Rightarrow \frac{{OH}}{{OI}} = \frac{{OF}}{{OB}} \Rightarrow OI.OF = OB.OH\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

x2 – 2(m + 1)x + 4m = 0 (1).

a) Thay m = 2 vào (1) ta được:

x2 – 6x + 8 = 0

\(\Delta '\) = 32 – 8 = 1 > 0

Vậy với m = 2 phương trình (1) có hai nghiệm phân biệt:

x1 = 3 + 1 = 4; x2 = 3 – 1 = 2.

b) Phương trình (1) có:

\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1.4m\)

= m2 + 2m + 1 – 4m = m2 – 2m + 1 = (m – 1)2 ≥ 0 \(\forall x \in \mathbb{R}\).

Suy ra phương trình (1) luôn có nghiệm.

c) Theo b) ta có phương trình (1) luôn có nghiệm.

Áp dụng hệ thức Vi−ét, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)(2)\\{x_1}{x_2} = 4m(3)\end{array} \right.\)

Theo để bài ta có:

x1(1 + x2) + x2(1 + x1) = 7

\( \Leftrightarrow \)x1 + x1x2 + x2 + x1x2 = 7

\( \Leftrightarrow \)(x1 + x2) + 2x1x2 = 7 (4)

Thay (2) và (3) vào (4) ta được:

2(m + 1) + 2.4m = 7

\( \Leftrightarrow \)2m + 2 + 8m = 7

\( \Leftrightarrow \) 10m = 5

\( \Leftrightarrow m = \frac{1}{2}\)

Vậy với \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP