Câu hỏi:

19/08/2025 948 Lưu

Cho phương trình x2 – (m + 2)x – 8 = 0 (m là tham số)

a) Giải phương trình khi m = 0.

b) Tính giá trị của m để phương trình luôn có hai nghiệm x1; x2 thỏa mãn

x1(1 – x2) + x2(1 – x1) = 8.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thay m = 0 vào phương trình ta có:

x2 – (0 + 2)x – 8 = 0

\( \Leftrightarrow \)x2 – 2x – 8 = 0

\(\Delta ' = 1 - 1.( - 8) = 9\)

Vậy phương trình có hai nghiệm là: \({x_1} = 1 - \sqrt 9 = - 2\); \({x_2} = 1 + \sqrt 9 = 4\).

b) Để phương trình đã cho có hai nghiệm phân biệt thì: \(\Delta > 0\)

\( \Leftrightarrow {(m + 2)^2} - 4.( - 8) > 0\)

\( \Leftrightarrow {(m + 2)^2} + 32 > 0\)(luôn đúng với \(\forall x \in \mathbb{R}\))

Áp dụng hệ thức Vi−ét ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 2\\{x_1}{x_2} = - 8\end{array} \right.\) (*)

Lại có: x1(1 – x2) + x2(1 – x1) = 8

\( \Leftrightarrow \) x1 – x1x2 + x2 – x1x2 = 8

\( \Leftrightarrow \) (x1 + x2) – 2x1x2 = 8

Thay (*) vào ta có: m + 2 – 2 . (−8) = 8

m + 2 + 16 = 8

m + 18 = 8

\( \Leftrightarrow \)m = −10

Vậy với m = −10 thì thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và  (ảnh 1)

a) Áp dụng hệ thức lượng trong tam giác, ta có:
• Xét \(\Delta AHC\): AH2 = AF.AC

• Xét \(\Delta AHB\): AH2 = AE.AB

Do đó AE.AB = AF. AC

b) Ta có: AH2 = AE.AB

\( \Rightarrow AE = \frac{{A{H^2}}}{{AB}} = \frac{{{3^3}}}{4} = 2,25\) (cm)

Mà AE + BE = AB

\( \Rightarrow \)BE = AB – AE

= 4 – 2,24 = 1,75 (cm)

c) \(\Delta AHC\) vuông tại H

\( \Rightarrow \cos \widehat {HAC} = \frac{{AH}}{{AC}}\)

\(AC = \frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm)

Theo ý a) ta có: AE.AB = AF.AC

\( \Rightarrow AF = \frac{{AE.AB}}{{AC}} = \frac{{2,25.4}}{{2\sqrt 3 }} = \frac{{3\sqrt 3 }}{2}\)(cm)

FC = AC – AF

\( = 2\sqrt 3 - \frac{{3\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\)(cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP