Câu hỏi:

20/04/2023 992

Xét dấu của các tam thức bậc hai sau:

a) x2 + 8x + 16;

b) −2x2 + 7x – 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) f(x) = x2 + 8x + 16

Ta \(\Delta '\)= 42 – 1.16 = 0; hệ số a = 1 > 0 nên f(x) có nghiệm kép x = −4 và f(x) > 0 với mọi m ≠ −4.

b) f(x) = −2x2 + 7x – 3

Ta \(\Delta \)= 72 – 4.(−2).(−3) = 25 > 0, hệ số a = −2 < 0 và có hai nghiệm phân biệt \({x_1} = \frac{1}{2}\); x2 = 3.

Do đó ta có bảng xét dấu f(x):

x

\( - \infty \)                        \(\frac{1}{2}\)                          3                                       \( + \infty \)

f(x)

                               0             +           0                        

Suy ra f(x) > 0 \(\forall x \in \left( {\frac{1}{2};3} \right)\) và f(x) < 0 \(\forall x \in \left( { - \infty ;\frac{1}{2}} \right) \cup (3; + \infty )\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

x2 – 2(m + 1)x + 4m = 0 (1).

a) Thay m = 2 vào (1) ta được:

x2 – 6x + 8 = 0

\(\Delta '\) = 32 – 8 = 1 > 0

Vậy với m = 2 phương trình (1) có hai nghiệm phân biệt:

x1 = 3 + 1 = 4; x2 = 3 – 1 = 2.

b) Phương trình (1) có:

\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1.4m\)

= m2 + 2m + 1 – 4m = m2 – 2m + 1 = (m – 1)2 ≥ 0 \(\forall x \in \mathbb{R}\).

Suy ra phương trình (1) luôn có nghiệm.

c) Theo b) ta có phương trình (1) luôn có nghiệm.

Áp dụng hệ thức Vi−ét, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)(2)\\{x_1}{x_2} = 4m(3)\end{array} \right.\)

Theo để bài ta có:

x1(1 + x2) + x2(1 + x1) = 7

\( \Leftrightarrow \)x1 + x1x2 + x2 + x1x2 = 7

\( \Leftrightarrow \)(x1 + x2) + 2x1x2 = 7 (4)

Thay (2) và (3) vào (4) ta được:

2(m + 1) + 2.4m = 7

\( \Leftrightarrow \)2m + 2 + 8m = 7

\( \Leftrightarrow \) 10m = 5

\( \Leftrightarrow m = \frac{1}{2}\)

Vậy với \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay