Câu hỏi:

19/08/2025 1,094 Lưu

Xét dấu của các tam thức bậc hai sau:

a) x2 + 8x + 16;

b) −2x2 + 7x – 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) f(x) = x2 + 8x + 16

Ta \(\Delta '\)= 42 – 1.16 = 0; hệ số a = 1 > 0 nên f(x) có nghiệm kép x = −4 và f(x) > 0 với mọi m ≠ −4.

b) f(x) = −2x2 + 7x – 3

Ta \(\Delta \)= 72 – 4.(−2).(−3) = 25 > 0, hệ số a = −2 < 0 và có hai nghiệm phân biệt \({x_1} = \frac{1}{2}\); x2 = 3.

Do đó ta có bảng xét dấu f(x):

x

\( - \infty \)                        \(\frac{1}{2}\)                          3                                       \( + \infty \)

f(x)

                               0             +           0                        

Suy ra f(x) > 0 \(\forall x \in \left( {\frac{1}{2};3} \right)\) và f(x) < 0 \(\forall x \in \left( { - \infty ;\frac{1}{2}} \right) \cup (3; + \infty )\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua  (ảnh 1)

a) Ta có: \(\widehat {AKB} = 90^\circ \) (góc nội tiếp đường tròn (O)) \( \Rightarrow \widehat {HKB} = 90^\circ \).

Có: \(\widehat {ACH} = \widehat {HCB} = 90^\circ \) (MN\( \bot \)AB; H, C MN)

Xét tứ giác BCHK có \(\widehat {HCB} + \widehat {HKB} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác BCHK nội tiếp đường tròn.

b) Xét \(\Delta ACH\)\(\Delta AKB\) có:
\(\widehat {BAK}\) chung

\(\widehat {ACH} = \widehat {AKB} = 90^\circ \) (cmt)

Suy ra \(\Delta AHC\) \(\Delta AKB\)(g.g)

\( \Rightarrow \frac{{AH}}{{AB}} = \frac{{AC}}{{AK}}\)

\( \Leftrightarrow \)AH.AK = AC. AB \( = \frac{R}{2}.2R = {R^2}\) (đpcm)

Lời giải

Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và  (ảnh 1)

a) Áp dụng hệ thức lượng trong tam giác, ta có:
• Xét \(\Delta AHC\): AH2 = AF.AC

• Xét \(\Delta AHB\): AH2 = AE.AB

Do đó AE.AB = AF. AC

b) Ta có: AH2 = AE.AB

\( \Rightarrow AE = \frac{{A{H^2}}}{{AB}} = \frac{{{3^3}}}{4} = 2,25\) (cm)

Mà AE + BE = AB

\( \Rightarrow \)BE = AB – AE

= 4 – 2,24 = 1,75 (cm)

c) \(\Delta AHC\) vuông tại H

\( \Rightarrow \cos \widehat {HAC} = \frac{{AH}}{{AC}}\)

\(AC = \frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm)

Theo ý a) ta có: AE.AB = AF.AC

\( \Rightarrow AF = \frac{{AE.AB}}{{AC}} = \frac{{2,25.4}}{{2\sqrt 3 }} = \frac{{3\sqrt 3 }}{2}\)(cm)

FC = AC – AF

\( = 2\sqrt 3 - \frac{{3\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\)(cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP