Câu hỏi:
20/04/2023 127Cho biểu thức \(A = 1:\left( {\frac{{x + 2\sqrt x - 2}}{{x\sqrt x + 1}} - \frac{{\sqrt x - 1}}{{x - \sqrt x + 1}} + \frac{1}{{\sqrt x + 1}}} \right)\).
a) Rút gọn A.
b) Tính giá trị của A nếu \(x = 7 - 4\sqrt 3 \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) \(A = 1:\left( {\frac{{x + 2\sqrt x - 2}}{{x\sqrt x + 1}} - \frac{{\sqrt x - 1}}{{x - \sqrt x + 1}} + \frac{1}{{\sqrt x + 1}}} \right)\)
\( = 1:\left( {\frac{{x + 2\sqrt x - 2}}{{x\sqrt x + 1}} - \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} + \frac{{x - \sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}} \right)\)
\( = 1:\left( {\frac{{x + 2\sqrt x - 2}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} + \frac{{ - x + 1 + x - \sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}} \right)\)
\( = 1:\left( {\frac{{x + 2\sqrt x - 2 - \sqrt x + 2}}{{x\sqrt x + 1}}} \right)\)
\( = 1:\frac{{x + \sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} = \frac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}} = \frac{{x - \sqrt x + 1}}{{\sqrt x }}\)
b) \(x = 7 - 4\sqrt 3 = 4 - 2.2.\sqrt 3 + 3 = {\left( {2 - \sqrt 3 } \right)^2}\)
Thay vào A ta được:
\(A = \frac{{7 - 4\sqrt 3 - \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + 1}}{{\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} }} = \frac{{7 - 4\sqrt 3 - \left( {2 - \sqrt 3 } \right) + 1}}{{2 - \sqrt 3 }}\)
\( = \frac{{6 - 3\sqrt 3 }}{{2 - \sqrt 3 }} = 3\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có trọng tâm G và tâm đường tròn ngoại tiếp O thỏa mãn \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \). Hỏi trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?
1) \[\overrightarrow {OG} = \vec 0\].
2) Tam giác ABC là tam giác vuông cân.
3) Tam giác ABC là tam giác đều.
4) Tam giác ABC là tam giác cân.
Câu 2:
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.
a) CM: AE.AB = AF.AC;
b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;
c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.
Câu 3:
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M là trung điểm của SB, G là trọng tâm tam giác SAD. Tìm giao tuyến mp(SGM) với mp(ABCD). Tìm giao điểm I của GM và mp(ABCD).
Câu 4:
Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:
Câu 5:
Một nhóm 10 học sinh gồm 5 học sinh nam trong đó có An và 5 học sinh nữ trong đó có Bình được xếp ngồi vào 10 cái ghế trên một hàng ngang. Hỏi có bao nhiêu cách sắp xếp nam và nữ ngồi xen kẽ, đồng thời An không ngồi cạnh Bình?
Câu 6:
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN.
a) Chứng minh tứ giác BCHK nội tiếp đường tròn.
b) Chứng minh AK.AH = R2.
Câu 7:
Cho hình vẽ biết xx’ // yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\) và \(\widehat {ABy}\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!