Câu hỏi:
12/07/2024 296Cho hệ phương trình: \(\left\{ \begin{array}{l}3x + 4y = 12\\mx + 2y = 6\end{array} \right.\).
a) Giải hệ phương trình với m = 1.
b) Tìm m để hệ phương trình có nghiệm x ∈ ℝ .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Với m = 1 ta có hệ phương trình:
\[\left\{ \begin{array}{l}3x + 4y = 12\\x + 2y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 12\\3x + 6y = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 12\\2y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 12\\y = 3\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}3x + 4.3 = 12\\y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 0\\y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 3\end{array} \right.\]
Vậy với m = 1 thì hệ phương trình có nghiệm duy nhất (x; y) = (0; 3).
b) Ta có:
\(\left\{ \begin{array}{l}3x + 4y = 12\\mx + 2y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 12\\2mx + 4y = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 12\\\left( {2m - 3} \right)x = 0\left( * \right)\end{array} \right.\)
Để hệ phương trình có nghiệm x ∈ ℝ thì phương trình (*) có nghiệm x ∈ ℝ
Û 2m – 3 = 0 \( \Leftrightarrow m = \frac{3}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Câu 2:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 3:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 4:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 5:
Câu 6:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 7:
về câu hỏi!