Câu hỏi:
16/05/2023 2,359Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Gọi H’ là điểm đối xứng H qua BC.
Suy ra D là trung điểm của HH’
Vì tam giác ABC cân tại A, AD là đường cao nên AD là trung tuyến
Suy ra D là trung điểm của BC
Xét tứ giác BHCH’ có
D là trung điểm của HH’ và BC;
BC và HH’ là hai đường chéo
Suy ra BHCH’ là hình bình hành.
Mà BH = CH nên hình bình hành BHCH’ là hình thoi
Do đó BH’ // CH, BH = BH’.
Lại có CH ⊥ AB (vì H là trực tâm của tam giác ABC) nên BH’⊥ AB
Hay tam giác ABH’ vuông tại B
Mà BD ⊥ AH’
Suy ra H’B2 = H’D . H’A
⇔ HB2 = HD . (2HD + HA)
⇔ 302 = HD . (2HD + 14)
⇔ 2HD2 + 14HD – 900 = 0
⇔ (HD + 25)(HD – 18) = 0
⇔ HD – 18 = 0 (vì HD > 0)
⇔ HD = 18
Ta có AD = AH + HD = 14 + 18 = 32 cm
Vậy AD = 32 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC đều cạnh a, tâm O. Hãy tính:
a) \(\overrightarrow {AB} .\overrightarrow {AC} \).
b) \(\overrightarrow {AB} .\overrightarrow {BC} \).
c) \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\).
d) \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\).
Câu 2:
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng AB. cos B + AC . cosC = BC.
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).
Câu 3:
Câu 4:
Cho tam giác abc vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh \(DE = \frac{1}{2}BC\)
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành.
Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Câu 5:
Câu 6:
Câu 7:
Cho tam giác ABC đều cạnh a, đường cao AH. Tính độ dài của các vecto:
\(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right|,\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|,\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
về câu hỏi!