Câu hỏi:

16/05/2023 869

Giải phương trình lượng giác \[{\rm{co}}{{\rm{s}}^2}x + {\rm{co}}{{\rm{s}}^2}2x + {\rm{co}}{{\rm{s}}^2}3x + {\rm{co}}{{\rm{s}}^2}4x = \frac{3}{2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có \[{\rm{co}}{{\rm{s}}^2}x + {\rm{co}}{{\rm{s}}^2}2x + {\rm{co}}{{\rm{s}}^2}3x + {\rm{co}}{{\rm{s}}^2}4x = \frac{3}{2}\]

\[ \Leftrightarrow {\rm{2co}}{{\rm{s}}^2}x + 2{\rm{co}}{{\rm{s}}^2}2x + 2{\rm{co}}{{\rm{s}}^2}3x + 2{\rm{co}}{{\rm{s}}^2}4x - 3 = 0\]

Media VietJack

\( \Leftrightarrow \left[ \begin{array}{l}2{\rm{x}} = \frac{{2\pi }}{5} + k2\pi \\2{\rm{x}} = \frac{{4\pi }}{5} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{\pi }{5} + k\pi \\{\rm{x}} = \frac{{2\pi }}{5} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Ta có cos4x = 0 \( \Leftrightarrow 4{\rm{x}} = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow {\rm{x}} = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\,\left( {k \in \mathbb{Z}} \right)\)

Vậy \[{\rm{x}} \in \left\{ {\frac{\pi }{8} + \frac{{k\pi }}{4};\frac{\pi }{5} + k\pi ;\frac{{2\pi }}{5} + k\pi } \right\},k \in \mathbb{Z}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có

\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.c{\rm{os}}\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = AB.AC.c{\rm{os}}\widehat {BAC} = a.a.c{\rm{os60}}^\circ = \frac{{{a^2}}}{2}\).

b) Ta có

\(\overrightarrow {AB} .\overrightarrow {BC} = - \overrightarrow {BA} .\overrightarrow {BC} = - BA.BC.cos\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = - BA.BC.co{\rm{s60}}^\circ {\rm{ = }}\frac{{ - {a^2}}}{2}\).

c) Gọi E là trung điểm của BC.

Suy ra \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OE} \).

Ta có \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\)

\( = 2\overrightarrow {OE} .\overrightarrow {CB} \)

\( = 2{\rm{O}}E.CB.co{\rm{s}}\left( {\overrightarrow {OE} ,\overrightarrow {CB} } \right)\)

\( = 2{\rm{O}}E.CB.\cos 90^\circ = 0\).

d) Ta có \(\overrightarrow {AC} .\overrightarrow {BC} = \overrightarrow {AC} .\overrightarrow {BC} = AC.BC.cos\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = AC.BC.co{\rm{s60}}^\circ {\rm{ = }}\frac{{{a^2}}}{2}\)

Ta có \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\)

\( = {\overrightarrow {AB} ^2} - 3\overrightarrow {AB} .\overrightarrow {BC} + 2\overrightarrow {AB} .\overrightarrow {AC} - 6\overrightarrow {AC} .\overrightarrow {BC} \)

\( = {a^2} + \frac{{3{{\rm{a}}^2}}}{2} + {a^2} - 3{{\rm{a}}^2} = \frac{{{a^2}}}{2}\).

Lời giải

Lời giải

Media VietJack

a) Ta có D, E là hình chiếu của M trên AB, AC

Nên DM AB và ME AC, hay \(\widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)

Xét tứ giác ADME có \(\widehat {DA{\rm{E}}} = \widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)

Suy ra ADME là hình chữ nhật.

b) Xét ΔABC vuông tại A có M là trung điểm BC

Suy ra \(AM = \frac{1}{2}BC\)

Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE

\(AM = \frac{1}{2}BC\)

Do đó \(DE = \frac{1}{2}BC\).

c) Ta có AD AC và ME AC, suy ra AD // ME

Mà M là trung điểm của BC

Suy ra E là trung điểm của AC

Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC

Suy ra QE là đường trung bình

Do đó QE // AM, \(QE = \frac{1}{2}AM\)                                     (1)

Ta có DM AB và AB AC

Suy ra DM // AC

Mà M là trung điểm của BC

Suy ra D là trung điểm của AB

Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM

Suy ra DP là đường trung bình của ΔBAM

Do đó DP // AM và \(DP = \frac{1}{2}AM\)                     (2)

Từ (1) và (2) suy ra DP // EQ, DP = EQ

Do đó DPQE là hình bình hành.

Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)

Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC

Suy ra M là trung điểm PQ

Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ

Suy ra AM là đường trung bình của DPQE

Do đó AM đi qua trung điểm DE, gọi điểm đó là F

Từ đó AM là trục đối xứng của DPQE tức là đi qua O

Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QE{\rm{D}}} = \widehat {E{\rm{D}}P} = 90^\circ \)

Ta xét ΔBAM nếu DP BM thì AM BM

Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao

Suy ra ΔABC vuông cân tại A

Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho tam giác ABC đều cạnh bằng a, trọng tâm G. Tích vô hướng của hai vectơ \(\overrightarrow {BC} .\overrightarrow {CG} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay