Câu hỏi:

16/05/2023 617 Lưu

Cho \(\left( {{\rm{x}} + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\). Tính x + y.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có \(\left( {{\rm{x}} + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\)

\( \Leftrightarrow \left( {\sqrt {{x^2} + 1} - x} \right)\left( {{\rm{x}} + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \sqrt {{x^2} + 1} - x\)

\( \Leftrightarrow \left( {{x^2} + 1 - {x^2}} \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \sqrt {{x^2} + 1} - x\)

\( \Leftrightarrow y + \sqrt {{y^2} + 1} = \sqrt {{x^2} + 1} - x\)                          (1)

Ta có \(\left( {{\rm{x}} + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\)

\( \Leftrightarrow \left( {\sqrt {{x^2} + 1} - x} \right)\left( {y + \sqrt {{y^2} + 1} } \right)\left( {\sqrt {{y^2} + 1} - y} \right) = \sqrt {{y^2} + 1} - y\)

\( \Leftrightarrow \left( {\sqrt {{x^2} + 1} - x} \right)\left( {{y^2} + 1 - {y^2}} \right) = \sqrt {{y^2} + 1} - y\)

\( \Leftrightarrow \sqrt {{x^2} + 1} - x = \sqrt {{y^2} + 1} - y\)

\( \Leftrightarrow \sqrt {{y^2} + 1} - y = \sqrt {{x^2} + 1} - x\)                                         (2)

Trừ vế theo vế của (1) cho (2) ta được

2y = 0

Û y = 0

Thay y = 0 vào (1) ta được \(1 = \sqrt {{x^2} + 1} - x\)

\( \Leftrightarrow \sqrt {{x^2} + 1} = x + 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\{x^2} + 1 = {\left( {x + 1} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\{x^2} + 1 = {x^2} + 2x + 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\2x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x = 0\end{array} \right. \Leftrightarrow x = 0\)

Do đó x + y = 0 + 0 = 0.

Vậy x + y = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có

\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.c{\rm{os}}\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = AB.AC.c{\rm{os}}\widehat {BAC} = a.a.c{\rm{os60}}^\circ = \frac{{{a^2}}}{2}\).

b) Ta có

\(\overrightarrow {AB} .\overrightarrow {BC} = - \overrightarrow {BA} .\overrightarrow {BC} = - BA.BC.cos\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = - BA.BC.co{\rm{s60}}^\circ {\rm{ = }}\frac{{ - {a^2}}}{2}\).

c) Gọi E là trung điểm của BC.

Suy ra \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OE} \).

Ta có \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\)

\( = 2\overrightarrow {OE} .\overrightarrow {CB} \)

\( = 2{\rm{O}}E.CB.co{\rm{s}}\left( {\overrightarrow {OE} ,\overrightarrow {CB} } \right)\)

\( = 2{\rm{O}}E.CB.\cos 90^\circ = 0\).

d) Ta có \(\overrightarrow {AC} .\overrightarrow {BC} = \overrightarrow {AC} .\overrightarrow {BC} = AC.BC.cos\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = AC.BC.co{\rm{s60}}^\circ {\rm{ = }}\frac{{{a^2}}}{2}\)

Ta có \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\)

\( = {\overrightarrow {AB} ^2} - 3\overrightarrow {AB} .\overrightarrow {BC} + 2\overrightarrow {AB} .\overrightarrow {AC} - 6\overrightarrow {AC} .\overrightarrow {BC} \)

\( = {a^2} + \frac{{3{{\rm{a}}^2}}}{2} + {a^2} - 3{{\rm{a}}^2} = \frac{{{a^2}}}{2}\).

Lời giải

Lời giải

Media VietJack

a) Ta có D, E là hình chiếu của M trên AB, AC

Nên DM AB và ME AC, hay \(\widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)

Xét tứ giác ADME có \(\widehat {DA{\rm{E}}} = \widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)

Suy ra ADME là hình chữ nhật.

b) Xét ΔABC vuông tại A có M là trung điểm BC

Suy ra \(AM = \frac{1}{2}BC\)

Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE

\(AM = \frac{1}{2}BC\)

Do đó \(DE = \frac{1}{2}BC\).

c) Ta có AD AC và ME AC, suy ra AD // ME

Mà M là trung điểm của BC

Suy ra E là trung điểm của AC

Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC

Suy ra QE là đường trung bình

Do đó QE // AM, \(QE = \frac{1}{2}AM\)                                     (1)

Ta có DM AB và AB AC

Suy ra DM // AC

Mà M là trung điểm của BC

Suy ra D là trung điểm của AB

Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM

Suy ra DP là đường trung bình của ΔBAM

Do đó DP // AM và \(DP = \frac{1}{2}AM\)                     (2)

Từ (1) và (2) suy ra DP // EQ, DP = EQ

Do đó DPQE là hình bình hành.

Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)

Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC

Suy ra M là trung điểm PQ

Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ

Suy ra AM là đường trung bình của DPQE

Do đó AM đi qua trung điểm DE, gọi điểm đó là F

Từ đó AM là trục đối xứng của DPQE tức là đi qua O

Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QE{\rm{D}}} = \widehat {E{\rm{D}}P} = 90^\circ \)

Ta xét ΔBAM nếu DP BM thì AM BM

Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao

Suy ra ΔABC vuông cân tại A

Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP