Câu hỏi:

19/08/2025 4,470 Lưu

Cho hàm số y = ax – 4 . Tìm hệ số a, biết rằng

a) Đồ thị hàm số cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2;

b) Đồ thị hàm số cắt đường thẳng y = –3x + 2 tại điểm có tung độ bằng 5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Để đường thẳng y = ax + 4 cắt đường thẳng y = 2x – 1 thì a ≠ 2.

Phương trình hoành độ giao điểm của đường thẳng y = ax + 4 và đường thẳng y = 2x – 1 là

ax – 4 = 2x – 1

ax = 2x + 3

Û (a – 2)x = 3

\( \Leftrightarrow x = \frac{3}{{a - 2}}\) (do a ≠ 2).

Do hai đường thẳng trên cắt nhau tại một điểm có hoành độ bằng 2 nên

\(\frac{3}{{a - 2}} = 2 \Leftrightarrow a - 2 = \frac{3}{2} \Leftrightarrow a = \frac{7}{2}\left( {tm} \right)\)

Vậy \[{\rm{a}} = \frac{7}{2}\].

a) Để đường thẳng y = ax + 4 cắt đường thẳng y = –3x + 2 thì a ≠ –3.

Phương trình hoành độ giao điểm của hai đường thẳng này là:

ax + 4 = –3x + 2

Û (a + 3)x = –2

\( \Leftrightarrow x = \frac{{ - 2}}{{a + 3}}\)

Thay \(x = \frac{{ - 2}}{{a + 3}}\) vào y = –3x + 2 ta được:

\[y = --3.\frac{{ - 2}}{{a + 3}} + 2 = \frac{{6 + 2a + 6}}{{a + 3}} = \frac{{2a + 12}}{{a + 3}}\]

Vậy tọa độ giao điểm của hai đường thẳng trên là \(\left( {\frac{{ - 2}}{{a + 3}};\frac{{2a + 12}}{{a + 3}}} \right)\).

Đồ thị hàm số y = ax + 4 cắt đường thẳng y = – 3x + 2 tại điểm có tung độ bằng 5 nên

\[\frac{{2a + 12}}{{a + 3}} = 5 \Rightarrow 2a + 12 = 5a + 15 \Leftrightarrow 3a = - 3 \Leftrightarrow a = - 1\left( {tm} \right)\]

Vậy a = –1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có D, E là hình chiếu của M trên AB, AC

Nên DM AB và ME AC, hay \(\widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)

Xét tứ giác ADME có \(\widehat {DA{\rm{E}}} = \widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)

Suy ra ADME là hình chữ nhật.

b) Xét ΔABC vuông tại A có M là trung điểm BC

Suy ra \(AM = \frac{1}{2}BC\)

Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE

\(AM = \frac{1}{2}BC\)

Do đó \(DE = \frac{1}{2}BC\).

c) Ta có AD AC và ME AC, suy ra AD // ME

Mà M là trung điểm của BC

Suy ra E là trung điểm của AC

Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC

Suy ra QE là đường trung bình

Do đó QE // AM, \(QE = \frac{1}{2}AM\)                                     (1)

Ta có DM AB và AB AC

Suy ra DM // AC

Mà M là trung điểm của BC

Suy ra D là trung điểm của AB

Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM

Suy ra DP là đường trung bình của ΔBAM

Do đó DP // AM và \(DP = \frac{1}{2}AM\)                     (2)

Từ (1) và (2) suy ra DP // EQ, DP = EQ

Do đó DPQE là hình bình hành.

Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)

Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC

Suy ra M là trung điểm PQ

Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ

Suy ra AM là đường trung bình của DPQE

Do đó AM đi qua trung điểm DE, gọi điểm đó là F

Từ đó AM là trục đối xứng của DPQE tức là đi qua O

Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QE{\rm{D}}} = \widehat {E{\rm{D}}P} = 90^\circ \)

Ta xét ΔBAM nếu DP BM thì AM BM

Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao

Suy ra ΔABC vuông cân tại A

Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.

Lời giải

Lời giải

Ta có a3 + b3 + c3 = 3abc

a3 + b3 + c3 – 3abc = 0

(a + b + c)(a² + b² + c² ab bc ca) = 0 

\( \Leftrightarrow \left[ \begin{array}{l}a + b + c = 0\\{a^2} + {b^2} + {c^2} - ab - bc - ca = 0\end{array} \right.\)

+) TH1: a + b + c = 0

Suy ra a = – (b + c); b = – (a + c); c = – (b + a)

Thay vào P ta có

\(P = \left( {1 - \frac{{b + c}}{b}} \right)\left( {1 - \frac{{a + c}}{c}} \right)\left( {1 - \frac{{a + b}}{a}} \right)\)

\(P = \left( {1 - 1 - \frac{c}{b}} \right)\left( {1 - 1 - \frac{a}{c}} \right)\left( {1 - 1 - \frac{b}{a}} \right)\)

\(P = - \frac{c}{b}.\frac{a}{c}.\frac{b}{a} = - 1\)

+) TH2: a2 + b2 + c2 – ab – bc – ca = 0

2(a2 + b2 + c2 – ab – bc – ca) = 0

(a2 – 2ab + b2) + (c2 – 2bc + b2) + (a2 – 2ca + c2) = 0

(a – b)2 + (b – c)2 + (a – c)2 = 0

\( \Leftrightarrow \left\{ \begin{array}{l}a - b = 0\\b - c = 0\\a - c = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = b\\b = c\\a = c\end{array} \right.\) a = b = c

Thay vào P ta có

P = (1 + 1)(1 + 1)(1 + 1) = 2 . 2 . 2 = 8.

Vậy P = –1 hoặc P = 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP