Câu hỏi:
16/05/2023 2,210
Cho điểm A nằm ngoài đường tròn (O; R). Từ A vẽ các tiếp tuyến AB, AC và cát tuyến ADE đến đường tròn (O). Gọi H là trung điểm của DE.
a) Chứng minh 5 điểm A, B, H, O, C cùng nằm trên một đường tròn.
b) Chứng minh HA là tia phân giác của góc BHC.
Cho điểm A nằm ngoài đường tròn (O; R). Từ A vẽ các tiếp tuyến AB, AC và cát tuyến ADE đến đường tròn (O). Gọi H là trung điểm của DE.
a) Chứng minh 5 điểm A, B, H, O, C cùng nằm trên một đường tròn.
b) Chứng minh HA là tia phân giác của góc BHC.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Vì AC là tiếp tuyến của (O) nên AC ⊥ OC, hay tam giác OAC vuông tại C
Suy ra C thuộc đường tròn đường kính AO (1)
Xét (O) có DE là dây cung, H là trung điểm của DE, suy ra DE ⊥ OH
Hay tam giác OHA vuông tại H
Suy ra H thuộc đường tròn đường kính AO (2)
Vì AB là tiếp tuyến của (O) nên AB ⊥ OB, hay tam giác OAB vuông tại B
Suy ra B thuộc đường tròn đường kính AO (3)
Từ (1), (2) và (3) suy ra 3 điểm C, H, B cùng nằm trên đường tròn đường kính AO.
Vậy 5 điểm A, B, H, O, C cùng nằm trên đường tròn đường kính AO.
b) • Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A
Suy ra \(\widehat {AOB} = \widehat {AOC}\) (4)
• Xét đường tròn đường kính AO có
\(\widehat {AOB},\widehat {AHB}\) là hai góc nội tiếp cùng chắn cung AB
Suy ra \(\widehat {AOB} = \widehat {AHB}\) (5)
• Xét đường tròn đường kính AO có
\(\widehat {AOC},\widehat {AHC}\) là hai góc nội tiếp cùng chắn cung AC
Suy ra \(\widehat {AOC} = \widehat {AHC}\) (6)
Từ (4), (5) và (6) suy ra \(\widehat {AHB} = \widehat {AHC}\).
Suy ra HA là tia phân giác của góc BHC
Vậy HA là tia phân giác của góc BHC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có
\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.c{\rm{os}}\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = AB.AC.c{\rm{os}}\widehat {BAC} = a.a.c{\rm{os60}}^\circ = \frac{{{a^2}}}{2}\).
b) Ta có
\(\overrightarrow {AB} .\overrightarrow {BC} = - \overrightarrow {BA} .\overrightarrow {BC} = - BA.BC.cos\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = - BA.BC.co{\rm{s60}}^\circ {\rm{ = }}\frac{{ - {a^2}}}{2}\).
c) Gọi E là trung điểm của BC.
Suy ra \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OE} \).
Ta có \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\)
\( = 2\overrightarrow {OE} .\overrightarrow {CB} \)
\( = 2{\rm{O}}E.CB.co{\rm{s}}\left( {\overrightarrow {OE} ,\overrightarrow {CB} } \right)\)
\( = 2{\rm{O}}E.CB.\cos 90^\circ = 0\).
d) Ta có \(\overrightarrow {AC} .\overrightarrow {BC} = \overrightarrow {AC} .\overrightarrow {BC} = AC.BC.cos\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = AC.BC.co{\rm{s60}}^\circ {\rm{ = }}\frac{{{a^2}}}{2}\)
Ta có \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\)
\( = {\overrightarrow {AB} ^2} - 3\overrightarrow {AB} .\overrightarrow {BC} + 2\overrightarrow {AB} .\overrightarrow {AC} - 6\overrightarrow {AC} .\overrightarrow {BC} \)
\( = {a^2} + \frac{{3{{\rm{a}}^2}}}{2} + {a^2} - 3{{\rm{a}}^2} = \frac{{{a^2}}}{2}\).
Lời giải
Lời giải
a) Ta có D, E là hình chiếu của M trên AB, AC
Nên DM ⊥ AB và ME ⊥ AC, hay \(\widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)
Xét tứ giác ADME có \(\widehat {DA{\rm{E}}} = \widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = 90^\circ \)
Suy ra ADME là hình chữ nhật.
b) Xét ΔABC vuông tại A có M là trung điểm BC
Suy ra \(AM = \frac{1}{2}BC\)
Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE
Mà \(AM = \frac{1}{2}BC\)
Do đó \(DE = \frac{1}{2}BC\).
c) Ta có AD ⊥ AC và ME ⊥ AC, suy ra AD // ME
Mà M là trung điểm của BC
Suy ra E là trung điểm của AC
Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC
Suy ra QE là đường trung bình
Do đó QE // AM, \(QE = \frac{1}{2}AM\) (1)
Ta có DM ⊥ AB và AB ⊥ AC
Suy ra DM // AC
Mà M là trung điểm của BC
Suy ra D là trung điểm của AB
Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM
Suy ra DP là đường trung bình của ΔBAM
Do đó DP // AM và \(DP = \frac{1}{2}AM\) (2)
Từ (1) và (2) suy ra DP // EQ, DP = EQ
Do đó DPQE là hình bình hành.
Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)
Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC
Suy ra M là trung điểm PQ
Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ
Suy ra AM là đường trung bình của DPQE
Do đó AM đi qua trung điểm DE, gọi điểm đó là F
Từ đó AM là trục đối xứng của DPQE tức là đi qua O
Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QE{\rm{D}}} = \widehat {E{\rm{D}}P} = 90^\circ \)
Ta xét ΔBAM nếu DP ⊥ BM thì AM ⊥ BM
Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao
Suy ra ΔABC vuông cân tại A
Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.