Câu hỏi:
11/07/2024 697Quảng cáo
Trả lời:
Vì x ⋮ 12, x ⋮ 21 và x ⋮ 28 nên x ∈ BC(12, 21, 28).
Ta có:
⦁ 12 = 22.3;
⦁ 21 = 3.7;
⦁ 28 = 22.7.
Suy ra BCNN(12, 21, 28) = 22.3.7 = 84.
Do đó x ∈ BC(12, 21, 28) = B(84) = {0; 84; 168; 252; 336; 420; 504; ...}.
Mà 150 < x < 300 nên x = 168 hoặc x = 252.
Vậy x = 168 hoặc x = 252 thỏa mãn yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt A = 1.2 + 2.3 + 3.4 + ... + 98.99.
Suy ra 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3.
= 1.2.3 + 2.3.(4 – 1) + 3.4.(5 – 2) + ... + 98.99.(100 – 97).
= 1.2.3 + 2.3.4 – 1.2.3 + 3.4.5 – 2.3.4 + ... + 98.99.100 – 97.98.99.
= 98.99.100
Suy ra A = 98.99.100 : 3 = 98.33.100 = 323 400.
Vậy A = 323 400.
Lời giải

Ta có D, E lần lượt là trung điểm của AC, AB.
Suy ra .
Gọi G là giao điểm của CE và BD.
Suy ra G là trọng tâm của tam giác ABC.
Đặt GD = x, GE = y.
Áp dụng tính chất trọng tâm cho tam giác ABC, ta được:
⦁ . Suy ra BG = 2GD = 2x.
⦁ . Suy ra CG = 2GE = 2y.
Áp dụng định lí Pitago cho tam giác BGE vuông tại G: BG2 + GE2 = BE2.
⇔ 4x2 + y2 = 9 (1)
Áp dụng định lí Pitago cho tam giác CGD vuông tại G: CG2 + GD2 = CD2.
⇔ 4y2 + x2 = 16 (2)
Lấy (1) + (2) vế theo vế, ta được 5(x2 + y2) = 25.
⇔ x2 + y2 = 5.
Áp dụng định lí Pitago cho tam giác BGC vuông tại G: BG2 + CG2 = BC2.
⇔ 4x2 + 4y2 = BC2.
⇔ 4(x2 + y2) = BC2.
⇔ BC2 = 4.5 = 20.
Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.