Có 8 đồng xu trong đó có 1 đồng xu giả có trọng lượng nhẹ hơn các đồng còn lại. Làm sao cân 2 lần (bằng cân thăng bằng) xác định được đồng xu giả đó?
Quảng cáo
Trả lời:
Lần cân thứ nhất:
– Lấy hai đồng xu ra, sau đó chia 6 đồng còn lại thành 2 nhóm, mỗi nhóm có 3 đồng xu.
– Cân 2 nhóm (mỗi nhóm có 3 đồng xu) vừa chia và xem kết quả.
Lần cân thứ hai:
⦁ Trường hợp 1: Nếu cân thăng bằng thì cân 2 đồng xu được lấy ra ở bước 1, phía cân nào nhẹ hơn thì bên đó là đồng xu giả.
⦁ Trường hợp 2: Nếu cân không thăng bằng thì lấy 3 đồng xu bên cân nhẹ hơn, bỏ 1 đồng ra và cân 2 đồng còn lại. Nếu cân thăng bằng thì đồng xu vừa bỏ ra là đồng xu giả. Nếu cân không thăng bằng thì đồng xu bên cân nhẹ hơn là đồng xu giả.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt A = 1.2 + 2.3 + 3.4 + ... + 98.99.
Suy ra 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3.
= 1.2.3 + 2.3.(4 – 1) + 3.4.(5 – 2) + ... + 98.99.(100 – 97).
= 1.2.3 + 2.3.4 – 1.2.3 + 3.4.5 – 2.3.4 + ... + 98.99.100 – 97.98.99.
= 98.99.100
Suy ra A = 98.99.100 : 3 = 98.33.100 = 323 400.
Vậy A = 323 400.
Lời giải
Gọi số học sinh của trường đó là x (900 < x < 1000 và x ∈ ℕ).
Mỗi lần xếp hàng 3, hàng 4, hàng 5 đều không có ai lẻ hàng.
Suy ra x chia hết cho 3, 4, 5 hay x là BC(3, 4, 5).
Mà BCNN(3, 4, 5) = 60.
Do đó x ∈ B(60) = {0; 60; 120; 180; 240; 300; ...}.
Mà 900 < x < 1000 và x ∈ ℕ nên x = 960.
Vậy số học sinh của trường đó là 960.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.