Câu hỏi:

30/06/2023 344

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm của OO’. Đường thẳng qua A cắt các đường tròn (O) và (O’) lần lượt ở C và D.

a) Khi CD MA, chứng minh AC = AD.

b) Khi CD đi qua A và không vuông góc với MA.

i) Vẽ đường kính AE của (O), AE cắt (O’) ở H. Vẽ đường kính AF của (O’), AF cắt (O) ở G. Chứng minh AB, EG, FH đồng quy.

ii) Tìm vị trí của CD để đoạn CD có độ dài lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm của OO’ (ảnh 1)

Gọi E, F theo thứ tự là trung điểm của AC, AD.

Suy ra OE AC và AE = CE; O’F AD và AF = DF.

Mà MA CD (giả thiết).

Do đó OE // MA // O’F.

Khi đó tứ giác OO’FE là hình thang.

Hình thang OO’FE có MA // OE // O’F và M là trung điểm của OO’.

Suy ra MA là đường trung bình của hình thang OO’FE.

Do đó AE = AF.

Vì vậy 2AE = 2AF.

Vậy AC = AD (điều phải chứng minh).

b)

Hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi M là trung điểm của OO’ (ảnh 2)

i) Gọi I là giao điểm của EG và FH.

Đường tròn (O) có AE là đường kính.

Suy ra AG GE và AB BE.

Đường tròn (O’) có AF là đường kính.

Suy ra AH FH và AB BF.

Ta có AB BE (chứng minh trên) và AB BF (chứng minh trên).

Suy ra ba điểm E, B, F thẳng hàng.

Do đó AB EF.

Tam giác IEF có hai đường cao EH và FG cắt nhau tại A.

Suy ra A là trực tâm của tam giác IEF.

Mà AB EF (chứng minh trên).

Do đó ba điểm I, A, B thẳng hàng.

Vậy AB, EG, FH đồng quy tại I.

ii) Kẻ OP CD và O’Q CD.

Suy ra P, Q lần lượt là trung điểm của AC, AD và OP // O’Q.

Khi đó AC = 2AP và AD = 2AQ.

Suy ra AC + AD = 2AP + 2AQ.

Vì vậy CD = 2PQ.

Do đó CD lớn nhất khi và chỉ khi PQ lớn nhất.

Ta có tứ giác OO’QP là hình thang vuông tại P, Q (vì OP // O’Q và OP PQ).

Suy ra PQ ≤ OO’.

Dấu “=” xảy ra OO’QP là hình chữ nhật.

PQ // OO’.

CD // OO’.

Vậy CD // OO’ thì CD có độ dài lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông (ảnh 1)

a) Ta có tam giác ADB vuông cân tại D.

Suy ra \(\widehat {DAB} = 45^\circ \).

Chứng minh tương tự, ta được \(\widehat {CAE} = 45^\circ \).

Ta có \(\widehat {DAB} + \widehat {BAC} + \widehat {CAE} = 45^\circ + 90^\circ + 45^\circ = 180^\circ \).

Vậy ba điểm D, A, E thẳng hàng.

b) Tam giác ABC vuông tại A có AM là đường trung tuyến.

Suy ra MA = MB = MC.

Do đó M nằm trên đường trung trực của đoạn AB        (1)

Chứng minh tương tự, ta được D nằm trên đường trung trực của đoạn AB        (2)

Từ (1), (2), suy ra DM là đường trung trực của đoạn AB.

Mà DM cắt AB tại I.

Do đó DM AB tại I.

Chứng minh tương tự, ta được ME AC tại K.

Tứ giác IAKM, có: \(\widehat {MIA} = \widehat {IAK} = \widehat {AKM} = 90^\circ \).

Vậy tứ giác IAKM là hình chữ nhật.

c) Tam giác ADB vuông cân tại D có DI là đường cao.

Suy ra DI cũng là đường phân giác của tam giác ADB.

Do đó \[\widehat {ADI} = 90^\circ :2 = 45^\circ \].

\(\widehat {DME} = 90^\circ \) (do tứ giác IAKM là hình chữ nhật).

Vậy tam giác DME là tam giác vuông cân tại M.

Lời giải

Ta có 3(x2 + x)2 – 2x2 – 2x = 0.

3(x2 + x)2 – 2(x2 + x) = 0.

(x2 + x)[3(x2 + x) – 2] = 0.

\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} + x = 0\\3{x^2} + 3x - 2 = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{{ - 3 \pm \sqrt {33} }}{6}\end{array} \right.\]

Vì vậy \(A = \left\{ {0; - 1;\frac{{ - 3 \pm \sqrt {33} }}{6}} \right\}\).

Vậy số tập con của tập A là 23 = 8 tập con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP