Câu hỏi:

12/07/2024 3,279

Thực hiện phép tính:

a) xy3 ‒ 2xy3 ‒ 12xy3;

b) \(\frac{{ - 12}}{{43}}{x^2}y + 2{x^2}y + \frac{{ - 31}}{{43}}{x^2}y\);

c) \(\frac{{ - \sqrt {16} }}{{75}}{x^6}{y^9}z + \frac{{ - \sqrt {49} }}{{15}}{x^6}{y^9}z - \frac{1}{5}{x^6}{y^9}z\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) xy3 ‒ 2xy3 ‒ 12xy3 = (1 ‒ 2 ‒ 12)xy3 = ‒13xy3.

b) \(\frac{{ - 12}}{{43}}{x^2}y + 2{x^2}y + \frac{{ - 31}}{{43}}{x^2}y\)

\( = \left( {\frac{{ - 12}}{{43}} + \frac{{ - 31}}{{43}} + 2} \right){x^2}y\)

= (1 + 2)x2y

= x2y.

c) \(\frac{{ - \sqrt {16} }}{{75}}{x^6}{y^9}z + \frac{{ - \sqrt {49} }}{{15}}{x^6}{y^9}z - \frac{1}{5}{x^6}{y^9}z\)

\( = \frac{{ - 4}}{{75}}{x^6}{y^9}z - \frac{7}{{15}}{x^6}{y^9}z - \frac{1}{5}{x^6}{y^9}z\)

\( = \left( {\frac{{ - 4}}{{75}} - \frac{7}{{15}} - \frac{1}{5}} \right){x^6}{y^9}z\)

\( = \left( {\frac{{ - 4}}{{75}} - \frac{{35}}{{75}} - \frac{{15}}{{75}}} \right){x^6}{y^9}z = \frac{{ - 54}}{{75}}{x^6}{y^9}z = \frac{{ - 18}}{{25}}{x^6}{y^9}z\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có: \(G = \frac{1}{2}{x^2} + bx + 23 = \frac{1}{2}{x^2} - \frac{1}{2}x + \frac{1}{2}x + bx + 23\)

 \(\; = \left( {\frac{1}{2}{x^2} - \frac{1}{2}x} \right) + \left( {\frac{1}{2}x + bx} \right) + 23\)

 \( = \frac{{{x^2} - x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\)

 \(\; = \frac{{\left( {x - 1} \right)x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\).

Do trong hai số nguyên liên tiếp luôn có một số chia hết cho 2 nên \(\frac{{\left( {x - 1} \right)x}}{2}\) luôn nhận giá trị nguyên tại mọi số nguyên x.

\(\frac{1}{2} + b\) là số nguyên, suy ra \(\frac{{\left( {x - 1} \right)x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\) luôn nhận giá trị nguyên tại mọi số nguyên x.

Vậy G luôn nhận giá trị nguyên tại mọi số nguyên x.

Lời giải

Lời giải

Do 54 2; 36 2; 12 2; 6 2 nên (‒54y6 + 36y4 +12y2 ‒ 6y) 2.

Suy ra giá trị của đa thức K = ‒54y6 + 36y4 +12y2 ‒ 6y là số chẵn tại mọi số nguyên \(y\). Mà 23 là số lẻ, suy ra giá trị của đa thức H = ‒54y6 + 36y4 +12y2 6y + 23 là số lẻ tại mọi số nguyên y.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP