Giải SBT Toán 8 Cánh diều Bài 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử có đáp án
29 người thi tuần này 4.6 568 lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
2 câu Trắc nghiệm Toán 8 Bài 10: Đường thẳng song song với một đường thẳng cho trước có đáp án (Vận dụng cao)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
11 câu Trắc nghiệm Toán 8 Bài 3: Rút gọn phân thức có đáp án (Nhận biết)
15 câu Trắc nghiệm Toán 8: Ôn tập chương 2 có đáp án (Thông hiểu)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
a) \(25{x^2} - \frac{1}{4} = {\left( {5x} \right)^2} - {\left( {\frac{1}{2}} \right)^2} = \left( {5x - \frac{1}{2}} \right)\left( {5x + \frac{1}{2}} \right)\).
b) 36x2 + 12xy + y2 = (6x)2 + 2.6.1.xy + y2 = (6x + y)2.
c) \(\frac{{{x^3}}}{2} + 4 = \frac{1}{2}\left( {{x^3} + {2^3}} \right) = \frac{1}{2}\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\).
d) 27y3 + 27y2 + 9y + 1 = (3y)3 + 3.(3y)2.1 + 3.3y.12 + 13 = (3y + 1)3.
Lời giải
Lời giải
a) x3(13xy ‒ 5) ‒ y3(5 ‒ 13xy)
= x3(13xy ‒ 5) + y3(13xy ‒ 5)
= (13xy ‒ 5)(x3 + y3)
= (13xy ‒ 5)(x + y)(x2 ‒ xy + y2).
b) 8x3yz + 12x2yz + 6xyz + yz
= yz(8x3 + 12x2 + 6x + 1)
= yz[(2x)3 + 3.(2x)2.1 + 3.2x.12 + 13)]
= yx(2x + 1)3.
Lời giải
Lời giải
a) Ta có: \(A = {x^2} + xy + \frac{{{y^2}}}{4} = {x^2} + 2 \cdot x \cdot \frac{y}{2} + {\left( {\frac{y}{2}} \right)^2} = {\left( {x + \frac{y}{2}} \right)^2}\).
Thay \(x + \frac{y}{2} = 100\) vào biểu thức trên ta có: A = 1002 = 10 000.
b) Ta có: B = 25x2z ‒ 10xyz + y2z
= z(25x2 ‒ 10xy + y2)
= z[(5x)2 ‒ 2.5x.y + y2)]
= z(5x ‒ y)2.
Thay 5x ‒ y = ‒20 và z = ‒5 vào biểu thức trên ta có:
B = ‒5.(‒20)2 = –5.400 = ‒2 000.
c) Ta có: C = x3yz + 3x2y2z + 3xy3z + y4z
= yz(x3 + 3x2y + 3xy2 + y3)
= yz(x + y)3.
Thay x + y = ‒0,5 và yz = 8 vào biểu thức trên ta có:
\[C = 8.{\left( { - 0,5} \right)^3} = 8.{\left( { - \frac{1}{2}} \right)^3} = 8.\left( { - \frac{1}{8}} \right) = - 1.\]
Lời giải
Lời giải
Trước hết, ta chứng minh (x5 ‒ x) ⋮ 5.
Ta có: x5 ‒ x = x(x4 ‒ 1) = x(x2 ‒ 1)(x2 + 1) = x(x ‒ 1)(x + 1)(x2 + 1)
• Nếu x = 5k thì x ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 1 thì x ‒ 1 = 5k ⋮ 5 .
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 2 thì x2 + 1 = (5k + 2)2 + 1 = 25k2 + 20k + 5 ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 3 thì x2 + 1 = (5k + 3)2 + 1 = 25k2 + 30k + 10 ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 4 thì x + 1 = 5k + 5 ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
Do đó x5 ‒ x ⋮ 5 với mọi số nguyên x.
Ta có: x5 ‒ x ⋮ 5; 15x2 ⋮ 5; 5 ⋮ 5 nên x5 ‒ 15x2 ‒ x + 5 ⋮ 5 với mọi số nguyên x.
Vậy B chia hết cho 5 với mọi số nguyên x.
Lời giải
Lời giải
a) Diện tích của tam giác ABC là:
\[\frac{1}{2}.AH.BC = \frac{1}{2}.x.2x = {x^2}\](dm2)
Diện tích hình vuông MNPQ là:
MN2 = y2 (dm2)
Vì vậy, tổng diện tích của các tam giác AMN, BMQ, CNP là:
S = x2 ‒ y2 (dm2)
b) Từ câu a, ta có
S = x2 ‒ y2 = (x ‒ y)(x + y)
Thay x – y = 2 và x + y = 10 vào S ta được:
S = 2.10 = 20 (dm2).
Vậy tổng diện tích của các tam giác AMN, BMQ, CNP là 20 dm2.
