Giải SBT Toán 8 Cánh diều Bài 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử có đáp án
34 người thi tuần này 4.6 396 lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 10)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
a) \(25{x^2} - \frac{1}{4} = {\left( {5x} \right)^2} - {\left( {\frac{1}{2}} \right)^2} = \left( {5x - \frac{1}{2}} \right)\left( {5x + \frac{1}{2}} \right)\).
b) 36x2 + 12xy + y2 = (6x)2 + 2.6.1.xy + y2 = (6x + y)2.
c) \(\frac{{{x^3}}}{2} + 4 = \frac{1}{2}\left( {{x^3} + {2^3}} \right) = \frac{1}{2}\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\).
d) 27y3 + 27y2 + 9y + 1 = (3y)3 + 3.(3y)2.1 + 3.3y.12 + 13 = (3y + 1)3.
Lời giải
Lời giải
a) x3(13xy ‒ 5) ‒ y3(5 ‒ 13xy)
= x3(13xy ‒ 5) + y3(13xy ‒ 5)
= (13xy ‒ 5)(x3 + y3)
= (13xy ‒ 5)(x + y)(x2 ‒ xy + y2).
b) 8x3yz + 12x2yz + 6xyz + yz
= yz(8x3 + 12x2 + 6x + 1)
= yz[(2x)3 + 3.(2x)2.1 + 3.2x.12 + 13)]
= yx(2x + 1)3.
Lời giải
Lời giải
a) Ta có: \(A = {x^2} + xy + \frac{{{y^2}}}{4} = {x^2} + 2 \cdot x \cdot \frac{y}{2} + {\left( {\frac{y}{2}} \right)^2} = {\left( {x + \frac{y}{2}} \right)^2}\).
Thay \(x + \frac{y}{2} = 100\) vào biểu thức trên ta có: A = 1002 = 10 000.
b) Ta có: B = 25x2z ‒ 10xyz + y2z
= z(25x2 ‒ 10xy + y2)
= z[(5x)2 ‒ 2.5x.y + y2)]
= z(5x ‒ y)2.
Thay 5x ‒ y = ‒20 và z = ‒5 vào biểu thức trên ta có:
B = ‒5.(‒20)2 = –5.400 = ‒2 000.
c) Ta có: C = x3yz + 3x2y2z + 3xy3z + y4z
= yz(x3 + 3x2y + 3xy2 + y3)
= yz(x + y)3.
Thay x + y = ‒0,5 và yz = 8 vào biểu thức trên ta có:
\[C = 8.{\left( { - 0,5} \right)^3} = 8.{\left( { - \frac{1}{2}} \right)^3} = 8.\left( { - \frac{1}{8}} \right) = - 1.\]
Lời giải
Lời giải
Trước hết, ta chứng minh (x5 ‒ x) ⋮ 5.
Ta có: x5 ‒ x = x(x4 ‒ 1) = x(x2 ‒ 1)(x2 + 1) = x(x ‒ 1)(x + 1)(x2 + 1)
• Nếu x = 5k thì x ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 1 thì x ‒ 1 = 5k ⋮ 5 .
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 2 thì x2 + 1 = (5k + 2)2 + 1 = 25k2 + 20k + 5 ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 3 thì x2 + 1 = (5k + 3)2 + 1 = 25k2 + 30k + 10 ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
• Nếu x = 5k + 4 thì x + 1 = 5k + 5 ⋮ 5.
Khi đó x(x ‒ 1)(x + 1)(x2 + 1) ⋮ 5 hay (x5 ‒ x) ⋮ 5.
Do đó x5 ‒ x ⋮ 5 với mọi số nguyên x.
Ta có: x5 ‒ x ⋮ 5; 15x2 ⋮ 5; 5 ⋮ 5 nên x5 ‒ 15x2 ‒ x + 5 ⋮ 5 với mọi số nguyên x.
Vậy B chia hết cho 5 với mọi số nguyên x.
Lời giải
Lời giải
a) Diện tích của tam giác ABC là:
\[\frac{1}{2}.AH.BC = \frac{1}{2}.x.2x = {x^2}\](dm2)
Diện tích hình vuông MNPQ là:
MN2 = y2 (dm2)
Vì vậy, tổng diện tích của các tam giác AMN, BMQ, CNP là:
S = x2 ‒ y2 (dm2)
b) Từ câu a, ta có
S = x2 ‒ y2 = (x ‒ y)(x + y)
Thay x – y = 2 và x + y = 10 vào S ta được:
S = 2.10 = 20 (dm2).
Vậy tổng diện tích của các tam giác AMN, BMQ, CNP là 20 dm2.