Câu hỏi:

11/07/2024 2,225

Chứng minh biểu thức B = x5 ‒ 15x2 ‒ x + 5 chia hết cho 5 với mọi số nguyên x.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Trước hết, ta chứng minh (x5 ‒ x) 5.

Ta có: x5 ‒ x = x(x4 ‒ 1) = x(x2 ‒ 1)(x2 + 1) = x(x ‒ 1)(x + 1)(x2 + 1)

• Nếu x = 5k thì x 5.

Khi đó x(x ‒ 1)(x + 1)(x2 + 1) 5 hay (x5 ‒ x) 5.

• Nếu x = 5k + 1 thì x ‒ 1 = 5k 5 .

Khi đó x(x ‒ 1)(x + 1)(x2 + 1) 5 hay (x5 ‒ x) 5.

• Nếu x = 5k + 2 thì x2 + 1 = (5k + 2)2 + 1 = 25k2 + 20k + 5 5.

Khi đó x(x ‒ 1)(x + 1)(x2 + 1) 5 hay (x5 ‒ x) 5.

• Nếu x = 5k + 3 thì x2 + 1 = (5k + 3)2 + 1 = 25k2 + 30k + 10 5.

Khi đó x(x ‒ 1)(x + 1)(x2 + 1) 5 hay (x5 ‒ x) 5.

• Nếu x = 5k + 4 thì x + 1 = 5k + 5 5.

Khi đó x(x ‒ 1)(x + 1)(x2 + 1) 5 hay (x5 ‒ x) 5.

Do đó x5 ‒ x 5 với mọi số nguyên x.

Ta có: x5 ‒ x 5; 15x2 5; 5 5 nên x5 ‒ 15x2 ‒ x + 5 5 với mọi số nguyên x.

Vậy B chia hết cho 5 với mọi số nguyên x.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Ta có: \(A = {x^2} + xy + \frac{{{y^2}}}{4} = {x^2} + 2 \cdot x \cdot \frac{y}{2} + {\left( {\frac{y}{2}} \right)^2} = {\left( {x + \frac{y}{2}} \right)^2}\).

Thay \(x + \frac{y}{2} = 100\) vào biểu thức trên ta có: A = 1002 = 10 000.

b) Ta có: B = 25x2z ‒ 10xyz + y2z

                  = z(25x2 ‒ 10xy + y2)

                  = z[(5x)2 ‒ 2.5x.y + y2)]

                  = z(5x ‒ y)2.

Thay 5x ‒ y = ‒20z = ‒5 vào biểu thức trên ta có:

B = ‒5.(‒20)2 = 5.400 = ‒2 000.

c) Ta có: C = x3yz + 3x2y2z + 3xy3z + y4z

                  = yz(x3 + 3x2y + 3xy2 + y3)

                  = yz(x + y)3.

Thay x + y = ‒0,5yz = 8 vào biểu thức trên ta có:

\[C = 8.{\left( { - 0,5} \right)^3} = 8.{\left( { - \frac{1}{2}} \right)^3} = 8.\left( { - \frac{1}{8}} \right) = - 1.\]

Lời giải

Lời giải

a) x3(13xy ‒ 5) ‒ y3(5 ‒ 13xy)

= x3(13xy ‒ 5) + y3(13xy ‒ 5)

= (13xy ‒ 5)(x3 + y3)

= (13xy ‒ 5)(x + y)(x2 ‒ xy + y2).

b) 8x3yz + 12x2yz + 6xyz + yz

= yz(8x3 + 12x2 + 6x + 1)

= yz[(2x)3 + 3.(2x)2.1 + 3.2x.12 + 13)]

= yx(2x + 1)3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay