Câu hỏi:
12/07/2024 2,400
Thu gọn mỗi đa thức sau:
a) \({x^2}{y^5} + 2x{y^2} - {x^2}{y^5} + \frac{{24}}{{35}}x{y^2}\);
b) ‒11y2z3 ‒ 22xy3z3 + 2y2z3 ‒ 33xy3z3 ‒ 72;
c) \(\frac{{\sqrt 4 }}{{41}}{x^2}{y^4}{z^3} + {x^2}{y^4}z + \frac{{39}}{{41}}{x^2}{y^4}{z^3} - {x^2}{y^4}z + {z^{18}}\).
Thu gọn mỗi đa thức sau:
a) \({x^2}{y^5} + 2x{y^2} - {x^2}{y^5} + \frac{{24}}{{35}}x{y^2}\);
b) ‒11y2z3 ‒ 22xy3z3 + 2y2z3 ‒ 33xy3z3 ‒ 72;
c) \(\frac{{\sqrt 4 }}{{41}}{x^2}{y^4}{z^3} + {x^2}{y^4}z + \frac{{39}}{{41}}{x^2}{y^4}{z^3} - {x^2}{y^4}z + {z^{18}}\).
Quảng cáo
Trả lời:
Lời giải
a) \({x^2}{y^5} + 2x{y^2} - {x^2}{y^5} + \frac{{24}}{{35}}x{y^2}\)
\( = \left( {{x^2}{y^5} - {x^2}{y^5}} \right) + \left( {2x{y^2} + \frac{{24}}{{35}}x{y^2}} \right)\)
\[ = 0 + \left( {2 + \frac{{24}}{{35}}} \right)x{y^2}\]
\( = \frac{{94}}{{35}}x{y^2}\).
b) ‒11y2z3 ‒ 22xy3z3 + 2y2z3 ‒ 33xy3z3 ‒ 72
= (‒11y2z3 + 2y2z3) + (‒ 22xy3z3 ‒ 33xy3z3) ‒ 72
= ‒9y2z3 ‒ 55xy3z3 ‒ 72.
c) \(\frac{{\sqrt 4 }}{{41}}{x^2}{y^4}{z^3} + {x^2}{y^4}z + \frac{{39}}{{41}}{x^2}{y^4}{z^3} - {x^2}{y^4}z + {z^{18}}\)
\( = \frac{2}{{41}}{x^2}{y^4}{z^3} + {x^2}{y^4}z + \frac{{39}}{{41}}{x^2}{y^4}{z^3} - {x^2}{y^4}z + {z^{18}}\)
\( = \left( {\frac{2}{{41}}{x^2}{y^4}{z^3} + \frac{{39}}{{41}}{x^2}{y^4}{z^3}} \right) + \left( {{x^2}{y^4}z - {x^2}{y^4}z} \right) + {z^{18}}\)
\( = {x^2}{y^4}{z^3} + {z^{18}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có: \(G = \frac{1}{2}{x^2} + bx + 23 = \frac{1}{2}{x^2} - \frac{1}{2}x + \frac{1}{2}x + bx + 23\)
\(\; = \left( {\frac{1}{2}{x^2} - \frac{1}{2}x} \right) + \left( {\frac{1}{2}x + bx} \right) + 23\)
\( = \frac{{{x^2} - x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\)
\(\; = \frac{{\left( {x - 1} \right)x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\).
Do trong hai số nguyên liên tiếp luôn có một số chia hết cho 2 nên \(\frac{{\left( {x - 1} \right)x}}{2}\) luôn nhận giá trị nguyên tại mọi số nguyên x.
Mà \(\frac{1}{2} + b\) là số nguyên, suy ra \(\frac{{\left( {x - 1} \right)x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\) luôn nhận giá trị nguyên tại mọi số nguyên x.
Vậy G luôn nhận giá trị nguyên tại mọi số nguyên x.
Lời giải
Lời giải
Do 54 ⋮ 2; 36 ⋮ 2; 12 ⋮ 2; 6 ⋮ 2 nên (‒54y6 + 36y4 +12y2 ‒ 6y) ⋮ 2.
Suy ra giá trị của đa thức K = ‒54y6 + 36y4 +12y2 ‒ 6y là số chẵn tại mọi số nguyên \(y\). Mà 23 là số lẻ, suy ra giá trị của đa thức H = ‒54y6 + 36y4 +12y2 6y + 23 là số lẻ tại mọi số nguyên y.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.