Câu hỏi:

03/07/2023 319

Cho phương trình: x2 − (m − 2)x− m − 1 = 0 (với m là tham số)

a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m.

b) Tìm m thỏa mãn hệ thức: (x1 − x2)2 − 3x1x2 = 21

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

x2 − (m − 2)x − m − 1 = 0

Δ=(m−2)2+4m+ 4 =m2+8> 0, m

Þ Phương trình luôn có 2 nghiệm phân biệt

Theo Viet ta có: 

\(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 2\\{x_1}{x_2} = - m - 1\end{array} \right.\)

(x1−x2)2−3x1x2= 21

Û(x1+x2)2− 7x1x2− 21 = 0

Û(m−2)2+7m+7− 21 =0

Ûm2+3m− 10 =0

\( \Rightarrow \left[ \begin{array}{l}m = 2\\m = - 5\end{array} \right.\)

Vậy m = 2 và m =−5 là các giá trị thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)

+) Trường hợp với a là số bất kì kể cả 0

Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)

Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)

Suy ra có \(A_5^3\,.\,A_7^2\) số

+) Trường hợp a = 0

Chọn a có 1 cách

Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)

Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)

Suy ra có \(A_4^3\,.\,C_7^1\) (cách)

Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.

Lời giải

a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).

Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).

Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).

b) Gỉả sử điểm D có tọa độ là D(xD; yD)

Vì C là trọng tâm của tam giác ABD nên ta có:

\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)

Vậy điểm D có tọa độ là D(8; −11).

c) Gỉả sử điểm D có tọa độ là E(xE; yE).

Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)

\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]

\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)

Vậy điểm E có tọa độ là E(−4; −5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP