Câu hỏi:
03/07/2023 607Cho hình nón đỉnh S có đường cao SO = a. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách từ O đến mặt phẳng (SAB) bằng \(\frac{{a\sqrt 2 }}{2}\). Diện tích xung quanh của hình nón đã cho bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi H, K lần lượt là hình chiếu của O lên AB và SH.
Ta có: AB ^ (SOH) Þ AB ^ OK
Mà OK ^ SH nên OK ^ (SAB)
\( \Rightarrow OK = d\left( {O,\;\left( {SAB} \right)} \right) = \frac{{a\sqrt 2 }}{2}\)
Trong tam giác vuông SOH, ta có:
\(\frac{1}{{O{K^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{H^2}}} \Leftrightarrow \frac{1}{{O{H^2}}} = \frac{1}{{O{K^2}}} - \frac{1}{{O{S^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} - \frac{1}{{{a^2}}} = \frac{1}{{{a^2}}}\)
Þ OH = a
Khi đó: \(SH = \sqrt {S{O^2} + O{H^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
Vì tam giác SAB vuông cân tại S nên có
\(SH = \frac{{AB}}{2} \Rightarrow AB = 2SH = 2a\sqrt 2 \)
Khi đó độ dài đường sinh là
l = SA = SB = 2a
Bán kính của đường tròn đáy là
\(r = OA = \sqrt {O{H^2} + H{A^2}} = \sqrt {{a^2} + {{\left( {\frac{{2a\sqrt 2 }}{2}} \right)}^2}} = a\sqrt 3 \)
Vậy diện tích xung quanh của hình nón là
\[{S_{xq}} = \pi \,.\,r\,.\,l = \pi \,.\,a\sqrt 3 .\,2a = 2\pi {a^2}\sqrt 3 \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số gồm 5 chữ số phân biệt có mặt đủ ba chữ số 1,2,3.
Câu 2:
Cho đường tròn (O; R) có đường kính AB, lấy điểm M thuộc đường tròn (O) sao cho AM < MB. Tiếp tuyến tại A của đường tròn (O) cắt tia OM tại S. Đường cao AH của tam giác SAO (H thuộc SO) cắt đường tròn (O) tại D.
1) Chứng minh: SD là tiếp tuyến của đường tròn (O).
2) Kẻ đường kính DE của đường tròn (O). Gọi r là bán kính đường tròn nội tiếp tam giác SAD. Chứng minh M là tâm đường tròn nội tiếp tam giác SAD và tính độ dài đoạn thẳng AE theo R và r.
3) Cho AM = r. Gọi K là giao điểm của BM và AD. Chứng minh: \(\frac{{M{D^2}}}{6} = KH\,.\,KD\).
Câu 3:
Cho B=3 + 32 + 33 + ... + 3120. Chứng minh:
a) B chia hết cho 3;
b) B chia hết cho 4;
c) B chia hết cho 13.
Câu 4:
Tam giác ABC vuông tại A, AB = a, AC = 3a.Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.
a) Chứng minh \(\frac{{DE}}{{DB}} = \frac{{DB}}{{DC}}\).
b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.
c) Tính tổng \(\widehat {AEB} + \widehat {BCD}\) bằng hai cách.
Câu 5:
Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.
a) Chứng minh CD = AC + BD.
b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. CM: AF.BC = KE.EB.
c) EF cắt CB tại I. CM tam giác AFC đồng dạng với tam giác BFD, suy ra FE là tia phân giác của góc CFD.
d) EA cắt CF tại M. EB cắt DF tại N. CM: M, I, N thẳng hàng.
Câu 6:
Cho hình chóp S.ABCD có AD và BC không song song. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.
a) Tìm giao tuyến của (SAD) và (SBC).
b) Chứng minh MN // (ABCD).
c) Tìm giao điểm của đường thẳng SD với (AMN).
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(−4; 1), B(2; 4), C(2; −2).
a) Tìm tọa độ trọng tâm của tam giác ABC.
b) Tìm tọa độ điểm D sao cho C là trọng tâm của tam giác ABD.
c) Tìm tọa độ điểm E sao cho tứ giác ABCE là hình bình hành.
về câu hỏi!