Câu hỏi:

03/07/2023 317

Cho các số dương x, y, z thoả mãn x + y + z = 3. Tìm GTLN của 

\(B = \sqrt {\frac{{xy}}{{xy + 3z}}} + \sqrt {\frac{{yz}}{{yz + 3x}}} + \sqrt {\frac{{zx}}{{zx + 3y}}} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3, ta có:

\[B = \sqrt {\frac{{xy}}{{xy + 3z}}} + \sqrt {\frac{{yz}}{{yz + 3x}}} + \sqrt {\frac{{zx}}{{zx + 3y}}} \]

\( = \sqrt {\frac{{xy}}{{xy + \left( {x + y + z} \right)z}}} + \sqrt {\frac{{yz}}{{yz + \left( {x + y + z} \right)x}}} + \sqrt {\frac{{zx}}{{zx + \left( {x + y + z} \right)y}}} \)

\( = \sqrt {\frac{{xy}}{{\left( {x + z} \right)\left( {y + z} \right)}}} + \sqrt {\frac{{yz}}{{\left( {y + x} \right)\left( {z + x} \right)}}} + \sqrt {\frac{{zx}}{{\left( {z + y} \right)\left( {x + y} \right)}}} \)

\( \le \frac{1}{2}\left( {\frac{x}{{x + z}} + \frac{y}{{y + z}} + \frac{y}{{y + x}} + \frac{z}{{z + x}} + \frac{z}{{z + y}} + \frac{x}{{x + y}}} \right)\)

\[ = \frac{1}{2}.\left( {\frac{{x + z}}{{x + z}} + \frac{{y + z}}{{y + z}} + \frac{{x + y}}{{x + y}}} \right) = \frac{3}{2}\]

Dấu “=” xảy ra khi và chỉ khi x = y = z = 1.

Vậy GTLN của B bằng \(\frac{3}{2}\) khi x = y = z = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)

+) Trường hợp với a là số bất kì kể cả 0

Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)

Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)

Suy ra có \(A_5^3\,.\,A_7^2\) số

+) Trường hợp a = 0

Chọn a có 1 cách

Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)

Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)

Suy ra có \(A_4^3\,.\,C_7^1\) (cách)

Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.

Lời giải

a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).

Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).

Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).

b) Gỉả sử điểm D có tọa độ là D(xD; yD)

Vì C là trọng tâm của tam giác ABD nên ta có:

\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)

Vậy điểm D có tọa độ là D(8; −11).

c) Gỉả sử điểm D có tọa độ là E(xE; yE).

Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)

\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]

\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)

Vậy điểm E có tọa độ là E(−4; −5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP