Câu hỏi:

03/07/2023 905

Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, Bsao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR: OK = OM 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các  (ảnh 1)

Qua B vẽ đường thẳng song song với AC cắt A1B1 và B1C1 lần lượt tại K­1 và M1.

Theo giả thiết: MK // AC

Mà M1K1 // AC (theo cách vẽ)

Suy ra: MK // M1K1.

Xét tam giác B11M1 có MK // M1K1 

Suy ra: \[\frac{{MO}}{{B{M_1}}} = \frac{{OK}}{{B{K_1}}}\] (*)

Xét tam giác AB1C1 và tam giác BM1C1 có:

\(\widehat {A{C_1}{B_1}} = \widehat {B{C_1}{M_1}}\) (2 góc đối đỉnh)

\(\widehat {A{B_1}{C_1}} = \widehat {B{M_1}{C_1}}\) (2 góc so le trong vì AC // M1K1)

Suy ra: ∆AB1C ∆BM1C1 (g.g)

Nên \(\frac{{B{M_1}}}{{A{B_1}}} = \frac{{B{C_1}}}{{A{C_1}}} \Rightarrow B{M_1} = A{B_1}.\frac{{B{C_1}}}{{A{C_1}}}\;\left( 1 \right)\)

Tương tự: ∆CB1A ∆BK1A1 (g.g)

Nên \(\frac{{B{K_1}}}{{C{B_1}}} = \frac{{B{A_1}}}{{C{A_1}}} \Rightarrow B{K_1} = C{B_1}.\frac{{B{A_1}}}{{C{A_1}}}\;\left( 2 \right)\)

Lấy (1) chia (2) ta được:

\(\frac{{B{M_1}}}{{B{K_1}}} = \frac{{A{B_1}}}{{B{C_1}}}\,.\,\frac{{C{A_1}}}{{B{A_1}}}\,.\,\frac{{C{B_1}}}{{A{C_1}}} = 1\)(áp dụng định lí Xê–va)

Suy ra: BM1 = BK1 (**)

Từ (*) và (**), ta có: OM = OK

Vậy OM = OK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)

+) Trường hợp với a là số bất kì kể cả 0

Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)

Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)

Suy ra có \(A_5^3\,.\,A_7^2\) số

+) Trường hợp a = 0

Chọn a có 1 cách

Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)

Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)

Suy ra có \(A_4^3\,.\,C_7^1\) (cách)

Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.

Lời giải

a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).

Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).

Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).

b) Gỉả sử điểm D có tọa độ là D(xD; yD)

Vì C là trọng tâm của tam giác ABD nên ta có:

\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)

Vậy điểm D có tọa độ là D(8; −11).

c) Gỉả sử điểm D có tọa độ là E(xE; yE).

Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)

\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]

\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)

Vậy điểm E có tọa độ là E(−4; −5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP