Câu hỏi:

03/07/2023 263

Cho a ≥ 1; b ≥ 9; c ≥ 16 thỏa mãn a.b.c = 1 152. Tìm giá trị lớn nhất của biểu thức: \(P = bc\sqrt {a - 1} + ca\sqrt {b - 9} + ab\sqrt {c - 16} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(P = bc\sqrt {a - 1} + ca\sqrt {b - 9} + ab\sqrt {c - 16} \)

\( \Leftrightarrow \frac{P}{{abc}} = \frac{{\sqrt {a - 1} }}{a} + \frac{{\sqrt {b - 9} }}{b} + \frac{{\sqrt {c - 16} }}{c}\)

\( \Leftrightarrow \frac{P}{{1152}} = \frac{{\sqrt {a - 1} }}{a} + \frac{{\sqrt {b - 9} }}{b} + \frac{{\sqrt {c - 16} }}{c}\)

Áp dụng BĐT AM - GM:

\(\left\{ \begin{array}{l}2\sqrt {a - 1} \le a - 1 + 1 = a\\2\sqrt {9\left( {b - 9} \right)} \le b - 9 + 9 = b\\2\sqrt {16\left( {c - 16} \right)} \le c - 16 + 16 = c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{\sqrt {a - 1} }}{a} \le \frac{1}{2}\\\frac{{\sqrt {b - 9} }}{b} \le \frac{1}{6}\\\frac{{\sqrt {c - 16} }}{c} \le \frac{1}{8}\end{array} \right.\)

Khi đó \(\frac{P}{{1152}} = \frac{{\sqrt {a - 1} }}{a} + \frac{{\sqrt {b - 9} }}{b} + \frac{{\sqrt {c - 16} }}{c} \le \frac{1}{2} + \frac{1}{6} + \frac{1}{8} = \frac{{19}}{{24}}\)

Û P ≤ 912

Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b - 9 = 9\\c - 16 = 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 18\\c = 32\end{array} \right.\)

Vậy GTLN của P là 912 khi (a; b; c) = (1; 18; 32).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)

+) Trường hợp với a là số bất kì kể cả 0

Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)

Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)

Suy ra có \(A_5^3\,.\,A_7^2\) số

+) Trường hợp a = 0

Chọn a có 1 cách

Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)

Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)

Suy ra có \(A_4^3\,.\,C_7^1\) (cách)

Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.

Lời giải

a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).

Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).

Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).

b) Gỉả sử điểm D có tọa độ là D(xD; yD)

Vì C là trọng tâm của tam giác ABD nên ta có:

\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)

Vậy điểm D có tọa độ là D(8; −11).

c) Gỉả sử điểm D có tọa độ là E(xE; yE).

Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)

\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]

\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)

Vậy điểm E có tọa độ là E(−4; −5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP