Quảng cáo
Trả lời:

Ta có: \({\cot ^2}x - {\tan ^2}x = \frac{{{{\cos }^2}x}}{{{{\sin }^2}x}} - \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\)
\( = \frac{{{{\cos }^4}x - {{\sin }^4}x}}{{{{\sin }^2}x\,.\,{{\cos }^2}x}} = \frac{{4\cos 2x}}{{{{\sin }^2}2x}}\).
Điều kiện: \(\left\{ \begin{array}{l}\sin 2x \ne 0\\\cos 2x \ne 0\end{array} \right. \Leftrightarrow \sin 4x \ne 0\).
Lúc đó: cot2 x – tan2 x = 16cos 2x
\( \Leftrightarrow \frac{{4\cos 2x}}{{{{\sin }^2}2x}} = 16\cos 2x\)
\( \Leftrightarrow \cos 2x\left( {\frac{1}{{{{\sin }^2}2x}} - 4} \right) = 0\)
+) TH1: cos 2x = 0
\( \Rightarrow 2x = \frac{\pi }{2} + k\pi ,\;k \in \mathbb{Z}\)
\( \Rightarrow x = \frac{\pi }{4} + k\frac{\pi }{2},\;k \in \mathbb{Z}\) (thỏa mãn)
+) TH2: \(\frac{1}{{{{\sin }^2}2x}} - 4 = 0\)
\( \Leftrightarrow {\sin ^2}2x = \frac{1}{4}\)
\( \Leftrightarrow \sin 2x = \pm \frac{1}{2}\)
• Với \(\sin 2x = \frac{1}{2}\), ta có:
\(\left[ \begin{array}{l}2x = \frac{\pi }{6} + k2\pi \;\left( {k \in \mathbb{Z}} \right)\\2x = \frac{{5\pi }}{6} + k2\pi \;\left( {k \in \mathbb{Z}} \right)\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \;\left( {k \in \mathbb{Z}} \right)\\x = \frac{{5\pi }}{{12}} + k\pi \;\left( {k \in \mathbb{Z}} \right)\end{array} \right.\) (thỏa mãn)
- Với \(\sin 2x = - \frac{1}{2}\), ta có:
\(\left[ \begin{array}{l}2x = - \frac{\pi }{6} + k2\pi \;\left( {k \in \mathbb{Z}} \right)\\2x = \frac{{7\pi }}{6} + k2\pi \;\left( {k \in \mathbb{Z}} \right)\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k\pi \;\left( {k \in \mathbb{Z}} \right)\\x = \frac{{7\pi }}{{12}} + k\pi \;\left( {k \in \mathbb{Z}} \right)\end{array} \right.\) (thỏa mãn)
Vậy các họ nghiệm của phương trình là:
\(x \in \left\{ {\frac{\pi }{4} + k\frac{\pi }{2};\; \pm \frac{\pi }{{12}} + k\pi ;\;\frac{{5\pi }}{{12}} + k\pi ;\;\frac{{7\pi }}{{12}} + k\pi \;\left( {k \in \mathbb{Z}} \right)} \right\}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)
+) Trường hợp với a là số bất kì kể cả 0
Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)
Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)
Suy ra có \(A_5^3\,.\,A_7^2\) số
+) Trường hợp a = 0
Chọn a có 1 cách
Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)
Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)
Suy ra có \(A_4^3\,.\,C_7^1\) (cách)
Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.
Lời giải
a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).
Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).
Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).
b) Gỉả sử điểm D có tọa độ là D(xD; yD)
Vì C là trọng tâm của tam giác ABD nên ta có:
\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)
Vậy điểm D có tọa độ là D(8; −11).
c) Gỉả sử điểm D có tọa độ là E(xE; yE).
Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)
\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]
\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)
Vậy điểm E có tọa độ là E(−4; −5).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.